Spalláció

Rádl Attila

2018. december 11.

- Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan kölcsönhatás
- Nagyenergiás: > 100 MeV/nukleon
- Kétlépcsős reakció
- \bullet 1. szint: magon beüli kaszkádjelenség \rightarrow nagyenergiás nukleonok, pionok a magon belül
- 2. szint: evaporáció, ezután a másodlagos részecskék újabb spallációs folyamatokat okoznak

э

Atommagok ütközésének modellezése

- Sok nukleonból áll a mag, azonban csak néhány érintett az elsődleges ütközésben
- Elsődleges kölcsönhatás leírása transzportegyenletekkel
- Kaszkádjelenség modellezése
- Megoldás időfüggő átlagtérrel (BUU) vagy kétrészecske-potenciállal (QMD)

- Klasszikus fizikai alapok + Pauli-elv
- Dinamikai leírás: nukleonok egyrészecske fázistérbeli eloszlásfüggvénye
- $(\partial_t + \nabla_p H \nabla_r \nabla_r H \nabla_p) f(\vec{r}, \vec{p}, t) =$ $\partial_t f(\vec{r}, \vec{p}, t) + \frac{\vec{p}}{E} \nabla_r f(\vec{r}, \vec{p}, t) - \nabla_r U(\vec{r}, \vec{p}) \nabla_p f(\vec{r}, \vec{p}, t) = I_{coll} [f(\vec{r}, \vec{p}, t)]$ • $m^*(\vec{r}, \vec{p}) = m_N + U(\vec{r}, \vec{p})$
- $E = \sqrt{m^* (\vec{r}, \vec{p})^2 + p^2}$
- Az impakt paraméterre vonatkozó feltétel: $b_{max} = \sqrt{\sigma_{nn}(\sqrt{s})/\pi}$

- A nukleonok fázistérbeli konfigurációja Gaussok kompozíciója
- $f^{(n)}(\vec{r_1}...\vec{r_A},\vec{p_1}...\vec{p_A},t) = \prod_{i=1}^{A} \frac{1}{(\pi\hbar)^3} e^{-(\vec{r}-\vec{r_i}(t))^2/2L} e^{-(\vec{p}-\vec{p_i}(t))^22L/\hbar^2}$
- $V = \frac{1}{2!} \sum_{j,i \neq j} V_{ij} = \frac{1}{2!} \sum_{j,i \neq j} \int f_i(\vec{r}_i,\vec{p}_i,t) f_j(\vec{r}_j,\vec{p}_j,t) V(\vec{r}_i,\vec{r}_j) d^3 r_i d^3 r_j d^3 p_i d^3 p_j = \frac{1}{2!} \sum_{j,i \neq j} \int f_i(\vec{r}_i,\vec{p}_i,t) f_j(\vec{r}_j,\vec{p}_j,t) t_1 \delta(\vec{r}_i-\vec{r}_j) d^3 r_i d^3 r_j d^3 p_i d^3 p_j = \sum_j t_1 \frac{1}{(4\pi L)^{3/2}} e^{-(\vec{r}_i-\vec{r}_j)/4L}$
- Hamilton: $\langle H \rangle = \sum_{i=1}^{A} \frac{\vec{p}_i^2}{2m_i} + \frac{\alpha}{2\rho_0} \sum_{i,j \neq i}^{A} \frac{1}{(4\pi L)^{3/2}} e^{-(\vec{r_i} \vec{r_j})/4L}$
- Állapotegyenlet ismeretében meghtározható az lpha paraméter

Spalláció és fisszió

- A két folyamat hasonló, de vannak különbségek
- Spalláció folyamán több neutron lép ki (\approx 30) kisebb energiabefektetéssel, valamint nagyobb energiájúak
- Kisebb energiájú fotonok keletkezése, nincsen láncreakció

- 一司

Atommagok energiaszintjei

- Gerjesztett állapot leírása
- Nukleonok fermionok \rightarrow fázistér állapotsűrűsége 0 hőmérsékleten: $\frac{dN^{n,p}}{dp} = N^{n,p} \frac{3p^2}{(p_F^{n,p})^3}$
- Fermi impulzus: $p_F^{n,p} = \left[\frac{N^{n,p}}{V_A}\frac{3h^3}{8\pi}\right]^{1/3}$
- Atommag térfogata: $V_A=rac{4}{3}R_A^3\pi=rac{4}{3}(r_0A^{1/3})^3\pi$, ahol $r_0=1.29 fm$
- Külső nukleonok potenciálja: $V^{n,p} = \frac{(p_F^{n,p})^2}{2m_{n,p} + E_{bind}^{n,p}}$
- Alacsonyenergiás részecskéknél (< 1*GeV*) az elektrosztatikus hatást is figyelembe kell venni: $V_C = \frac{e^2}{4\pi\epsilon_0 r_0 \frac{Z}{1+A^{1/3}}}$

• Gerjesztési energia: $U = E_{res} - E_{0,res}$

• Tömeg: $E_{0,res} = Z_{res}m_p + (A_{res} - Z_{res})m_n - E_{bind}$

- Magon belüli kaszkádfolyamat után gerjesztett állapotú mag
- A gerjesztési energia a nukleonok között oszlik meg
- Kötési energiánál nagyobb lehet \rightarrow nukleonok távoznak
- Párolgási valószínűség: $P_j(E)dE = \frac{(2S_j+1)m_j}{\pi^2\hbar^3}\sigma_{inv}\frac{\rho_f(U_f)}{\rho_i(U_i)}EdE$
- $\rho(U) \approx C \exp(2\sqrt{A/8U})$ megmutatja az energiaszintek sűrűségét egy adott gerjesztési energiánál
- $U_i = U$ és $U_f = U E Q_j$, ahol Q_j a kilépéshez szükséges energia
- σ_{inv} inverz hatáskeresztmetszet, töltötteknél a Coulomb-gát is számít

•
$$P_j(E)dE = \frac{(2S_j+1)m_j}{\pi^2\hbar^3}\sigma_{inv}\frac{e^{2\sqrt{A/8(U-E-Q_j)}}}{e^{2\sqrt{A/8U}}}EdE$$

Megmaradt nukleonok száma

Image: A math black

э

- Alacsony energiás másodlagos részecskék okozta intranukleáris kaszkád, evaporáció $\to<0.7~c$ sebességű könnyű részecskék
- Emulziókban gyakori (könnyű: H,C,N,O és nehéz: Ag,Br magok keveréke)
- Szürke: intranukleáris kaszkádfolyamat, $\beta = 0.23 0.7,$ sgyszeresen töltött
- Fekete: evaporációból, $\beta < 0.23$, többszörösen is lehet töltött

э

- Nagyintenzitású neutronnyalábok
- Radioaktív nyalábok, neutronban gazdag izotópok vizsgálata
- Kiterjedt minták vizsgálata
- Asztrofizika: spalláció, mint a nukleoszintézis egyik lépcsője
- Forró maganyag létrehozása

Létrehozható izotópok

Rádl Attila

2018. december 11. 17 / 2

э

(🗗 🕨

• Töltött részecskék kiszűrése

2. táblázat Spallációs céltárgyak céljára használt néhány szilárd anyag néhány jellemzője				
céltárgy anyaga	tömegszám (A)	neutronelnyelési hatáskeresztmetszet (barn)	hővezetési állandó (Wm ⁻¹ K ⁻¹)*	olvadáspont (K)
Та	181	21	54	3270
w	184	19,2	180	3380
Hg	201	375	8,3	234
Pb	207	0,17	35 (16 – 623 K esetén)	600
Bi	209	0,034	8,5 (11,3 – 573 K esetén)	544
Pb-Bi eutektikus ötvözet		0,094**	9,3 (423 K esetén)	398
Th	232	7,4	41	1968
^{nat} U	238	7,59	25	1406
²³⁸ U	238	2,7	25	1406

< □ > < ---->

э

Asztrofizikai vonatkozások

- Nukleoszintézisben a spalláció szerepe
- Kozmikus sugárzás kiindulási idejének meghatározása hosszú felezési idejű izotópokkal (¹⁰Be, 6 · 10⁶ év)

Képalkotás neutronokkal

• Más a hatáskeresztmetszet fémekre, mint a röntgen esetében

3

(日) (同) (三) (三)

- Fenyvesi A: Spallációs és fragmentációs atommag-reakciók, Fizikai Szemle 59 (2009) 157
- A. Ferrari: Cascade particles, nuclear evaporation, and residual nuclei in high energy hadron-nucleus interactions, Z.Phys. C70 (1996) 413-426
- J.-C. David: Spallation reactions. A successful interplay between modeling and applications, The European Physical Journal A 51:68 (2015)
- J. Benlliure: Spallation Reactions in Applied and Fundamental Research, The Euroschool Lectures on Physics with Exotic Beams, Vol. II pp 191-238