Körte alakú atommagok

Sveiczer András, MSc 2. év

ELTE TTK Magfizika szeminárium 2018 őszi félév

Körte alak és EDM

- A végcélunk alapállapotú objektumok EDM-jének mérése
- A Standard Modell tesztelése, és QCD CP-sértés keresése, antianyag kérdés magyarázata (Sakharovfeltételek)
- Semleges objektumok EDM mérése könnyű
- Az elektronfelhő viszont leárnyékolja szinte teljesen
- A megmaradó EDM körte alakú atommagok esetén sokkal jelentősebb

Neutron and Atomic EDM moment

Static Electric Dipole Moment implies CP-violation

N. Ramsey

E. Purcell

n(eutron)EDM mérése

Probing the electron EDM

e	System	Group	Limit	C.L.	Value	Year
	²⁰⁵ Tl	Berkeley	1.6×10^{-27}	90%	$6.9(7.4) \times 10^{-28}$	2002
	YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
L	ThO	ACME	8.7×10^{-29}	90	$-2.1(3.7)(2.5) \times 10^{-29}$	2014

• Schiff's theorem overcome by relativity (electric and magnetic fields mix)

$$d_A(d_e) = K_A d_e \qquad K_A \propto Z^3 \alpha_{em}^2$$

- So for light systems large suppression
- But for heavy systems we can even enhance the EDM !

Octupole enhanced atomic EDM moment

Schiff moment enhanced by ~ 3 orders of magnitude in pear-shaped nuclei

Diamágneses anyagok, vagyis zárt elektronhéj!

Qn meghatározása

 Az átmeneti mátrix elemei mérhető mennyiségek, meghatározzák a különböző gamma-átmenetek valószínűségét
-> ezeket kell kísérletileg megmérni a Qn-ek meghatározásához

Matrix element	²²⁰ Rn		²²⁴ Ra		
< <i>l'</i> E λ <i>l</i> >	m.e. (e fm ²)	<i>Β</i> (Ελ)↓ (WU)	m.e. (e fm ²)	<i>Β</i> (Ελ)↓ (WU)	
<0 ⁺ E1 1 ⁻ >	<0.10	$< 1.5 \times 10^{-3}$	<0.018	$<5 \times 10^{-5}$	
<2 ⁺ E1 1 ⁻ >	<0.13	$< 3 \times 10^{-3}$	< 0.03	$< 1.3 \times 10^{-4}$	
<2 ⁺ E1 3 ⁻ >	<0.18	$< 2 \times 10^{-3}$	0.026 ± 0.005	$3.9^{+1.7}_{1.4} \times 10^{-5}$	
<4 ⁺ E1 5 ⁻ >	0.028 ± 0.009	$3.0^{+2}_{1.6} \times 10^{-5}$	0.030 ± 0.010	$4^{+3}_{2} \times 10^{-5}$	
<6 ⁺ E1 7 ⁻ >	<1.3	<0.5	<0.10	<3×10 ⁻⁴	
<0+ E2 2+>	137 ± 4	48 ± 3	199 ± 3	98±3	
<1- E2 3->	180 ± 60	60^{+50}_{-30}	230 ± 11	93±9	
$<2^{+} E2 4^{+}>$	212 ± 4	63 ± 3	315 ± 6	137 ± 5	
<3 ⁻ E2 5 ⁻ >	220 ± 150	60^{+100}_{-50}	410 ± 60	190 ± 60	
$<4^{+} E2 6^{+}>$	274 ± 14	73±8	405 ± 15	156 ± 12	
<6 ⁺ E2 8 ⁺ >			500 ± 60	180 ± 60	
$<0^{+} E2 2^{+}_{\gamma}>$	32 ± 7	2.6 ± 1.1	23 ± 4	1.3 ± 0.5	
<0 ⁺ E3 3 ⁻ >	810 ± 50	33 ± 4	940 ± 30	42±3	
<2 ⁺ E3 1 ⁻ >	<2,600	<760	$1,370 \pm 140$	210 ± 40	
<2 ⁺ E3 3 ⁻ >	<5,300	<1,400	<4,000	<600	
<2 ⁺ E3 5 ⁻ >	$1,700 \pm 400$	90 ± 50	1,410 ± 190	61 ± 17	

Table 1 | Values of matrix elements measured in the present experiment

The experimental measurements for the absolute values of the matrix elements, | m.e. |, and the reduced transition probabilities, $B(E\lambda)$, are given here. The values of $B(E\lambda)$ for electromagnetic decay (\downarrow) are derived from the matrix elements and are given in single particle units (Weisskopf units, WU). The uncertainties include the 1σ statistical error from the fit ($\chi^2 + 1$ type) and systematic contributions—beam energy and target thickness uncertainties, deorientation, beam spot effects, and so on. The upper limits correspond to 3σ .

 $\langle I'||E\lambda||I\rangle = \sqrt{(2I'+1)(2\lambda+1)/16\pi(I'0\lambda0|I0)}Q_{\lambda}$

Qn meghatározása

 Az átmeneti mátrix elemei mérhető mennyiségek, meghatározzák a különböző gamma-átmenetek valószínűségét
-> ezeket kell kísérletileg megmérni a Qn-ek meghatározásához

 $\langle I'||E\lambda||I\rangle = \sqrt{(2I'+1)(2\lambda+1)/16\pi(I'0\lambda0|I0)}Q_{\lambda}$

A kísérleti módszer

- Radioaktív ionnyalábot hoznak létre, viszonylag alacsony energián (néhány MeV/nukleon)
- Nehézelem fix céltárgyon gerjesztik az atommagokat (Coulomb-gerjesztés, n(virtuális foton) ~ Z²)
- Az alapállapotba való visszatéréskor az átmeneteknek megfelelő fotonokat bocsájt ki az izotóp

Coulomb excitation of ²²⁴Ra beam

γ-ray spectrum taken with MINIBALL & REX-ISOLDE

²²⁴Ra

E2 and E3 moments for heavy nuclei

Magok töltéseloszlása

Octupole enhanced atomic EDM moment

Schiff moment enhanced by ~ 3 orders of magnitude in pear-shaped nuclei

See also talk by F Recchia

2016 EDM Limits

Prog. Part. Nuc. Phy. 71 (2013) 21; PHYSICAL REVIEW C 94, 025501 (2016) , Phys. Rev. Lett. 116, 161601 (2016)

System	Best Limit (2σ) 10 ⁻²⁸ e*cm	SM estimate 10 ⁻²⁸ e*cm	1	Method (Location)
Electron	0.9	~10-10	cold Tl	nO beam (Harvard/Yale)
Neutron	300	~10-4	τ	JCN in bottle (ILL)
Nuclear	0.074	~10-7	Hg (V	g atoms in vapor cell Vashington-Seattle)
Nuclear	Best Limit (2σ) 10 ⁻²⁸ e*cm	Long Term Goal "I	Goal on Hg scale″	Method (Location)
Hg-199	0.074	0.010	0.010	Hg atoms in vapor cell (Washington-Seattle)
Xe-129	66	0.001	0.010	Xe/He gas mixture cell (Michigan)
Ra-225				Ra atoms in a laser tran
Ra 22 0	140000	1.000	0.001	(Argonne)

Hogyan tovább?

- Körte alakú magú atomok EDM mérése, neutron és elektron EDM mérések nagyobb precizitással
- Nem zérus EDM következményei
 - 1. kísérleti bizonyíték BSM-re nagy eséllyel!
 - nem paritás sajátállapotban van az alapállapota egy részecskének!

Köszönöm a figyelmet!