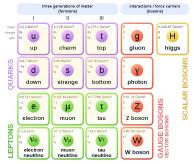
Neutrino detectors

Bálint Kurgyis

Eötvös University, Budapest

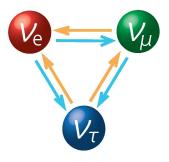

Nuclear Phyiscs Seminar, 2019.10.10.

Introduction	Theoretical background	Detectors	Experiments and results	Outlook and summary
0000				
What are the ne	utrinos?			

The weak interaction in the Standard Model

- $\bullet ~" {\sf weak}" \to {\sf coupling ~constant}$
- mediator particles: W^{\pm}, Z^{0}
- neutrinos: only weak interaction
- β -decay

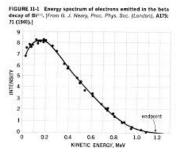
Standard Model of Elementary Particles


Bálint Kurgyis Neutrino detectors

Introduction 0●00	Theoretical background	Detectors 000	Experiments and results	Outlook and summary
What are the neu	itrinos?			
Neutrin	os and their pr	operties		

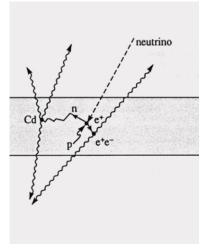
"Tiny, Plentiful and Really Hard to Catch"

www.nytimes.com/2005/04/26/science/tiny-plentiful-and-really-hard-to-catch.html


- spin 1/2 fermions
- leptons
- three flavours (e, μ, τ)
- no charge
- non-zero mass
- parity violating (CP violating)
- very small cross sections
- neutrino flux on Earth $\sim 7 \cdot 10^{10} \frac{1}{\text{cm}^2 \cdot \text{s}}$

Introduction	Theoretical background	Detectors	Experiments and results	Outlook and summary	
0000	0000	000	0000000	000	
What are the neu	What are the neutrinos?				
First pr	ediction				

"I've done a terrible thing, I have postulated a particle that cannot be detected." - Wolfgang Ernst Pauli /1930/

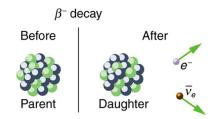

- \bullet contunous energy spectrum of β decay
- $\bullet\,$ three body interaction, with neutral $\nu\,$
- 0 ch., low x-section \rightarrow can't be detected ?

Introduction	Theoretical background	Detectors		Outlook and summary
0000	0000	000	000000	000
What are the neu	trinos?			

The Reines-Cowan experiment

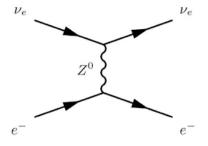
- high flux (atomic reactor)
- inverse β decay: $p + \nu_e \rightarrow n + e^+$
- high volume of water (p)
- coincidence measurement of $e^+ + e^- \to \gamma\gamma$
- delayed signal of *n* capture: $^{108}Cd + n \rightarrow ^{109}Cd + \gamma$
- γ detected by photomultiplier tubes (PMT)
- Pauli sent them a case of Champage

Introduction 0000	Theoretical background ●000	Detectors 000	Experiments and results	Outlook and summary
Weak processes				


What kind of interactions can happen?

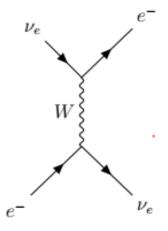
At first glance:

- negative β -decay: $n \rightarrow p + e^- + \bar{\nu}_e$
- positive eta-decay: $p
 ightarrow n + e^+ +
 u_e$
- inverse β decay: $p + \nu_e \rightarrow n + e^+$
- electron capture: ${\it p} + e^-
 ightarrow {\it n} + {\it
 u}_e$
- elastic scattering: $e^- + \nu \rightarrow e^- + \nu$
- etc...


Fundamentally:

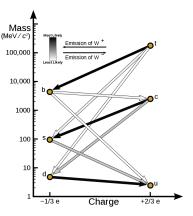
- neutral current
- charged current

Introduction 0000	Theoretical background 0●00	Detectors 000	Experiments and results	Outlook and summary
Weak processes				
Neutral	current intera	ction		

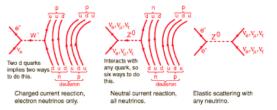

- mediated by Z^0 boson
- no charge is interchanged

Introduction 0000	Theoretical background 00●0	Detectors 000	Experiments and results 0000000	Outlook and summary
Weak processes				
Charged	l current intera	ction		

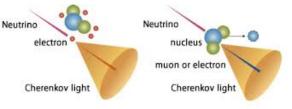
• mediated by W^{\pm} boson

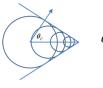

• charge is changed

Introduction 0000	Theoretical background 000●	Detectors 000	Experiments and results	Outlook and summary
Weak processes				
• •				


β -decay, decay scheme of quarks

- quark flavour is not conserved
- charged current process
- β -decay: $n \rightarrow p + e^- + \bar{\nu}_e$
- on quark level: $d
 ightarrow u + e^- + ar{
 u}_e$
- (flavour changing neutral current is not yet observed)


Introduction 0000	Theoretical background	Detectors ●00	Experiments and results	Outlook and summary
Observation of ne	eutrinos			
Neutrin	o detection			


- cannot be detected directly
- CC interaction (flavour sensitive)
- NC interaction (flavour insensitive)
- (proton decay?)

Introduction 0000	Theoretical background	Detectors 0●0	Experiments and results	Outlook and summary
Observation of ne	eutrinos			
Cheren	kov radiation			

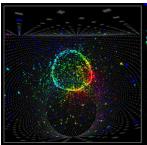
- charged particles are created/accelerated
- Cherenkov radiaton (scintillation,others...)
- transparent medium, with n > 1
- $\bullet\,$ PMT-s detect the γ
- orientation can be determined
- ν_{μ} and ν_{e} may be distinguishable

 $\theta_{C} = \cos^{-1}\left(\frac{1}{\beta n}\right)$

Bálint	Kι	ırgyis	
Veutri	no	detect	ი

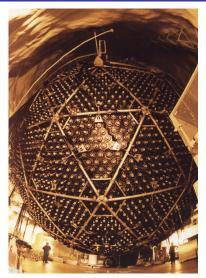
Introduction 0000	Theoretical background	Detectors 00●	Experiments and results 0000000	Outlook and summary
Observation of ne	utrinos			

Usual experimental setup


- high ν flux
- deep underground (shielding)
- high volume of transparent matter
- water or ice
- Iots of low-noise PMTs
- very long data taking periods
- very few events

Introduction

heoretical background


Detectors 000 Experiments and results

Outlook and summary

Neutrino detectors around the globe

Sudbury Neutrino Observatory (SNO)

- Canada, Sudbury
- tank of heavy water (1000 t)
- solar neutrinos
- both CC and NC
- could measure the ν_e separately

Bálint Kurgyis Neutrino detectors

Introduction 0000	Theoretical background	Detectors 000	Experiments and results 000000	Outlook and summary		
Neutrino detectors around the globe						
Results	of SNO					

- solar neutrino problem (1/3 of expected)
- first observation of solar neutrino oscillation (2001)
- neutrino oscillation (non-zero ν mass)
- flavour & mass eigenstates are different

$$P_{a \to b} = \sin^2(2\theta) \sin^2\left(\frac{1.27\Delta m^2 (\text{eV}^2) L(\text{km})}{E_{\nu}(\text{GeV})}\right)$$

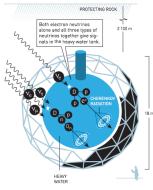
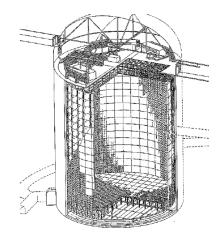
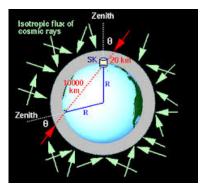



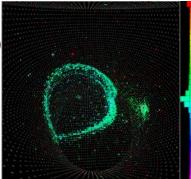
Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

Introduction 0000	Theoretical background	Detectors 000	Experiments and results	Outlook and summary
Neutrino detectors a	round the globe			

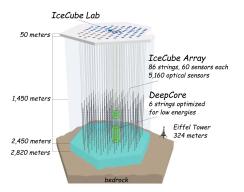
Super-Kamiokande (Super-K)


- Japan
- 50000 tons of water
- 13000 PMTs
- solar, atmospheric neutrinos
- proton decay, supernovae
- direction sensitive detection

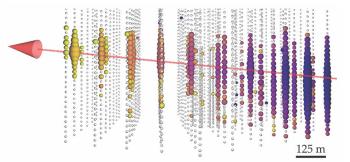
Bálint Kurgyis Neutrino detectors


Introduction 0000	Theoretical background	Detectors 000	Experiments and results	Outlook and summary		
Neutrino detectors around the globe						
Results	of Super-K					

- neutrino oscillation of atmospheric neutrinos $\nu_{\mu} \leftrightarrow \nu_{\tau}$
- neutrino oscillation of solar neutrinos
- Δm^2 measurements


Introduction 0000	Theoretical background	Detectors 000	E×periments and results 0000●00	Outlook and summary		
Neutrino detectors around the globe						
Results	of Super-K					

- first and only confirmed neutrino observation from a supernova (SN 1987A) $p + e^- \rightarrow n + \nu_e$
- Supernova Early Warning System (SNEWS)
 - \rightarrow no observations so far (since 2005)
- no proton decay observed so far
- proton lifetime: $\tau_p > 5.9 \cdot 10^{34}$ year


Introduction 0000	Theoretical background	Detectors 000	Experiments and results 00000●0	Outlook and summary		
Neutrino detectors around the globe						
IceCube	e Neutrino Obs	ervatory				

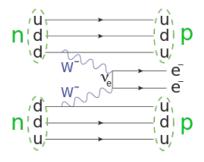
- Antartica
- \bullet > 1 km³ ice
- high energy neutrinos
- direction sensitive detection

Introduction 0000	Theoretical background	Detectors 000	Experiments and results 000000●	Outlook and summary	
Neutrino detectors around the globe					
Results	of IceCube				

- netrinos from a blazar (TXS 0506+056)
- very high energy neutrinos (2000 TeV)
- Δm^2 measurements
- shadowing effect of the Moon

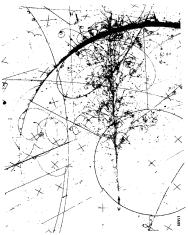
Future plans for neutrino detectors

- SNO \rightarrow SNO+
- KM3NET in the Mediterranian Sea
- Refinement of measurements
- Data collection
- Search for new physics



 Introduction
 Theoretical background
 Detectors
 Experiments and results
 Outlook and summary

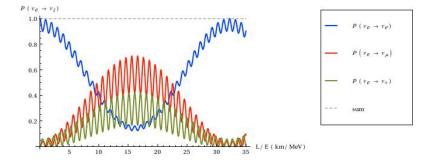
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 00


New physics with neutrinos

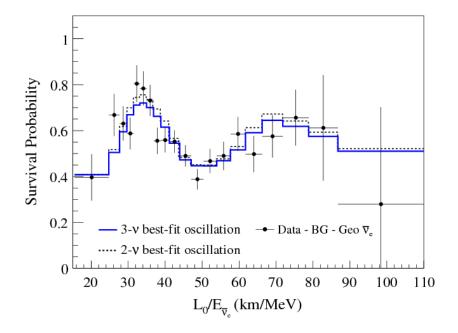
- proton decay
- sterile neutrino (only gravity)
- $\bullet\,$ neutrinoless double $\beta\,$ decay
- supernova detection
- sources of high energy cosmic neutrinos

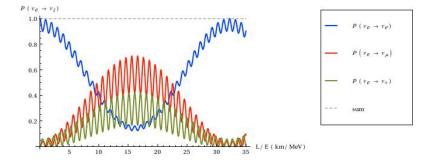
Introduction 0000	Theoretical background	Detectors 000	Experiments and results	Outlook and summary 00●			
Future of neutrin	Future of neutrino detectors						
Conclu	sions						

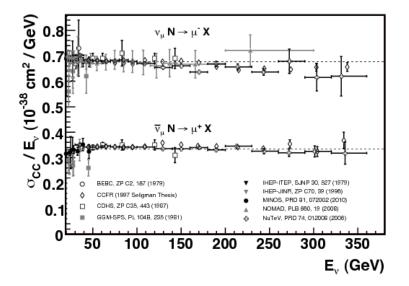
- Mysterious particles since the beginning
- Lots of uncertainties up until today
- Neutrino-oscillation is not incorporated into the Standard Model
- Challenging for both experimentalists and theorists



- Phys. Rev. D 90, 072005 (2014)
- Phys.Rev.Lett.81:1562-1567 (1998)
- Annual Review of Astronomy and Astrophysics 27:629-700 (1989)
- Science. 124 (3212): 103-4. (1956)
- https://icecube.wisc.edu/
- SNO+ Letter of intent http://www.sno.phy.queensu.ca/~alex/SNOLab.pdf
- https://sno.phy.queensu.ca/
- https://en.wikipedia.org/wiki/Proton_decay
- https://en.wikipedia.org/wiki/Neutrino_oscillations
- https://en.wikipedia.org/wiki/Cowan-Reines_neutrino_ experiment


SNO solution for solar neutrino problem


Example plot for neutrino oscillation


Experimental results for neutrino oscillation

Example plot for neutrino oscillation

Neutrino cross sections

