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Introduction Theoretical background Detectors Experiments and results Outlook and summary

What are the neutrinos?

The weak interaction in the Standard Model

”weak” → coupling constant

mediator particles: W±,Z 0

neutrinos: only weak interaction

β-decay
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What are the neutrinos?

Neutrinos and their properties

“Tiny, Plentiful and Really Hard to Catch”
www.nytimes.com/2005/04/26/science/tiny-plentiful-and-really-hard-to-catch.html

spin 1/2 fermions

leptons

three flavours (e, µ, τ)

no charge

non-zero mass

parity violating (CP violating)

very small cross sections

neutrino flux on Earth ∼ 7 · 1010 1
cm2·s
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What are the neutrinos?

First prediction

“I’ve done a terrible thing, I have postulated a particle that cannot be
detected.” - Wolfgang Ernst Pauli /1930/

contunous energy spectrum of β decay

three body interaction, with neutral ν

0 ch., low x-section → can’t be detected ?
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What are the neutrinos?

The Reines-Cowan experiment

high flux (atomic reactor)

inverse β decay: p + νe → n + e+

high volume of water (p)

coincidence measurement of
e+ + e− → γγ

delayed signal of n capture:
108Cd + n→109 Cd + γ

γ detected by photomultiplier tubes
(PMT)

Pauli sent them a case of Champage
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Weak processes

What kind of interactions can happen?

At first glance:

negative β-decay: n→ p + e− + ν̄e

positive β-decay: p → n + e+ + νe

inverse β decay: p + νe → n + e+

electron capture: p + e− → n + νe

elastic scattering: e− + ν → e− + ν

etc...

Fundamentally:

neutral current

charged current
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Weak processes

Neutral current interaction

mediated by Z 0 boson

no charge is interchanged
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Weak processes

Charged current interaction

mediated by W± boson

charge is changed
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Weak processes

β-decay, decay scheme of quarks

quark flavour is not conserved

charged current process

β-decay: n→ p + e− + ν̄e

on quark level: d → u + e− + ν̄e

(flavour changing neutral current is not
yet observed)
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Observation of neutrinos

Neutrino detection

cannot be detected directly

CC interaction (flavour sensitive)

NC interaction (flavour insensitive)

(proton decay?)
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Observation of neutrinos

Cherenkov radiation

charged particles are created/accelerated

Cherenkov radiaton (scintillation,others...)

transparent medium, with n > 1

PMT-s detect the γ

orientation can be determined

νµ and νe may be distinguishable
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Observation of neutrinos

Usual experimental setup

high ν flux

deep underground (shielding)

high volume of transparent matter

water or ice

lots of low-noise PMTs

very long data taking periods

very few events
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Neutrino detectors around the globe

Sudbury Neutrino Observatory (SNO)

Canada, Sudbury

tank of heavy water (1000 t)

solar neutrinos

both CC and NC

could measure the νe separately
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Neutrino detectors around the globe

Results of SNO

solar neutrino problem (1/3 of expected)

first observation of solar neutrino
oscillation (2001)

neutrino oscillation (non-zero ν mass)

flavour & mass eigenstates are different

Pa→b = sin2(2θ) sin2

(
1.27∆m2(eV2)L(km)

Eν(GeV)

)
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Neutrino detectors around the globe

Super-Kamiokande (Super-K)

Japan

50000 tons of water

13000 PMTs

solar, atmospheric neutrinos

proton decay, supernovae

direction sensitive detection
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Neutrino detectors around the globe

Results of Super-K

neutrino oscillation of atmospheric
neutrinos νµ ↔ ντ

neutrino oscillation of solar neutrinos

∆m2 measurements
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Neutrino detectors around the globe

Results of Super-K

first and only confirmed neutrino
observation from a supernova (SN 1987A)
p + e− → n + νe

Supernova Early Warning System
(SNEWS)
→ no observations so far (since 2005)

no proton decay observed so far

proton lifetime: τp > 5.9 · 1034 year
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Neutrino detectors around the globe

IceCube Neutrino Observatory

Antartica

> 1 km3 ice

high energy neutrinos

direction sensitive detection
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Neutrino detectors around the globe

Results of IceCube

netrinos from a blazar (TXS 0506+056)

very high energy neutrinos (2000 TeV)

∆m2 measurements

shadowing effect of the Moon
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Future of neutrino detectors

Future plans for neutrino detectors

SNO→ SNO+

KM3NET in the Mediterranian Sea

Refinement of measurements

Data collection

Search for new physics
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Future of neutrino detectors

New physics with neutrinos

proton decay

sterile neutrino (only gravity)

neutrinoless double β decay

supernova detection

sources of high energy cosmic neutrinos
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Future of neutrino detectors

Conclusions

Mysterious particles since the beginning

Lots of uncertainties up until today

Neutrino-oscillation is not incorporated
into the Standard Model

Challenging for both experimentalists and
theorists
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SNO solution for solar neutrino problem



Example plot for neutrino oscillation



Experimental results for neutrino oscillation



Example plot for neutrino oscillation



Neutrino cross sections
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