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Neutrons
• Discovered in 1932 

• "Made of three quarks: u,d,d" 

• Spin: 1/2 

• Mass:  
939.5 654 133(58) MeV/c2 

• Magnetic moment:  
−1.91 304 273(45) μN 

• Half-life: 881.5(15) s



Decay of neutrons
• Second lightest baryon, proton is 

the lightest 

• According to the Standard Model 
of particle physics, it can decay 
into a proton exclusively 
(conservation of baryon number 
and energy) 

• On the quark-level, a down quark 
decays into an up quark and a W- 
boson 

• The W- boson decays further into 
an electron, and an electron-type 
antineutrino



Lifetime of neutrons
• Its value is inaccurate! 

• Determines the |Vud| element of the CKM-matrix, since 
it's a down quark to up quark conversion.  
 
 

• Determines the H:He ratio of the universe!
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Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is
reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron
lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The
precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this
experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before: the
probability of UCN losses from the trap was only 1% of that for neutron β decay. The neutron lifetime obtained,
878.5 ± 0.7stat ± 0.3sys s, is the most accurate experimental measurement to date.
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I. INTRODUCTION

Precision measurements of the neutron lifetime are im-
portant for elementary particle physics and cosmology. The
decay of a free neutron into a proton, an electron, and an
antineutrino is determined by the weak interaction comprising
the transition of a d quark into a u quark. In the Standard Model
of elementary particles, the quark mixing is described by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, which must be
unitary. For instance, for the first row we have

|Vud |2 + |Vus |2 + |Vub|2 = 1, (1)

where Vud, Vus , and Vub are the matrix elements related to
the mixing of a u quark with a d, s, or b quark, respectively.
The values of the individual matrix elements are determined
by the weak decays of the respective quarks. In particular, the
matrix element Vud can be determined from a nuclear β decay
and neutron β decay. The extraction of Vud from neutron β
decay data is attractive because of the theoretical simplicity in
describing neutron decay. The experimental procedure itself
requires precise measurements of the neutron lifetime τn and
the β decay asymmetry A0. The neutron half-life t is given by
the following equation [1]:

f t(1 + δ′
R) = K

|Vud |2G2
F (1 + 3λ2)(1 + %R)

, (2)

where f = 1.6886 is the phase space factor, δ′
R = 1.466 ×

10−2 is a model-independent external radiative correction
[2,3], %R = 2.40 × 10−2 is a model-dependent internal ra-
diative correction [4,5], λ = GA/GV is the ratio of the
axial-vector weak coupling constant to the vector weak
coupling constant, GF is the Fermi weak coupling constant
determined from the µ decay, and K is a combination of the
known fundamental constants. The relative uncertainties in
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the electroweak radiative corrections are of the order of a few
percent. The general formula for |Vud |2 as a function of τn and
λ takes the form [3]

|Vud |2 = 4908.7 ± 1.9 s
τn(1 + 3λ2)

, (3)

where the accuracy in calculation of the radiative corrections
has been incorporated. Thus, the required relative accuracy of
the neutron lifetime τn measurement must be higher than 10−3,
whereas the relative accuracy of the λ measurement must be
higher than 0.5 × 10−3. The parameter λ can be obtained from
the measurements of the asymmetry A0 of the neutron β decay:

A0 = −2
λ(λ + 1)
1 + 3λ2

. (4)

Since %λ/λ = 0.25%A0/A0, the relative accuracy of the
asymmetry measurement must be higher than 2 × 10−3.

Precise measurements of the neutron lifetime are also
important input parameters in the models of the early stages
of the formation of the Universe.

The observed quantities in the Big Bang model are the initial
abundances of deuterium and 4He. These quantities depend on
the ratio of the number of baryons to the number of photons
in the initial nucleosynthesis stage and on the neutron lifetime
τn. For instance, at a fixed value of baryon asymmetry η10, a
variation in the neutron lifetime by 1% changes the value of the
initial abundance of 4He by 0.75%. The relative accuracy of
the measurement of 4He abundance is 0.61% [6]. Similarly, a
variation in the neutron lifetime by 1% changes η10 by 17%; the
value of η10 is currently estimated to the precision of 3.3% [6].
Thus, to verify the nucleosynthesis model in the Big Bang, the
accuracy of the neutron lifetime measurement must be higher
than 1%.

The results presented in this paper have already published
briefly in Ref. [7]. Here we present a more detailed account of
the experiment.
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λ = GA / GV is the ratio of the axial-vector weak 
coupling constant to the vector weak coupling constant  

881.5(15) s



H:He ratio



Measuring the life time: 
Cold and ultra cold neutrons



Measuring the lifetime: 
Beam experiments
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precision of the data [14]. If successful, this would make
possible another independent check of CKM unitarity using the
first column: |Vud|2 + |Vcd|2 + |Vtd|2 = 1. Thus, a precision
measurement of |Vud| can be used for two separate checks of
CKM unitarity.

Furthermore, assuming unitarity of the upper row of the
CKM matrix and the Wolfenstein parametrization, a precision
determination of |Vud| can be used to infer the Wolfenstein
parameter λW = Vud, which is needed for the tests of the
unitarity triangles at B factories. The phenomena considered as
possible causes for violation of CKM unitarity include right-
handed currents [15], supersymmetry [16], exotic fermions
[17,18], and additional Z bosons [19,20] among others. One
notes that while the sum above is dominated by |Vud|, the
contribution of |Vus| is significant, and there remains a question
of the reliability of the currently accepted value and its
uncertainty. There has been recent discussion regarding the
value of |Vus| from kaon decay based on new results and
evaluations of kaon semileptonic decay rates. If one were to
use the value of |Vus| from some recent evaluations [21], the
discrepancy with unitarity disappears. Efforts are now under
way to clarify this situation using kaon decay data from several
collaborations [22]. There are also renewed theoretical efforts
to attempt to extract |Vus| from hyperon decay [23].

B. Neutron lifetime and nucleosynthesis

The neutron lifetime also influences the predictions of the
theory of big-bang nucleosynthesis (BBN) for the primordial
helium abundance in the universe and the number of different
types of light neutrinos Nν . Since a large fraction of the
uncertainty in the BBN prediction for the primordial 4He/H
abundance ratio comes from the uncertainty of the neutron
lifetime [24,25], improved neutron lifetime measurements
are useful for sharpening the BBN prediction. With the
recent high-precision determination of the cosmic baryon
density reported by the Wilkinson Microwave Anisotropy
Probe (WMAP) measurement of the microwave background
[26], the BBN prediction for the 4He abundance is higher
than the value inferred from observation [27]. However,
systematic uncertainties in the astronomical determinations
of the 4He/H ratio are still believed to dominate the difference
between theory and observation. Furthermore, comparisons of
BBN helium abundance calculations to observation using the
number of known light neutrinos (Nν = 3) are consistent with
the value derived from Z decay [10].

II. EXPERIMENTAL METHOD AND APPARATUS

A. The in-beam technique

The measurement presented here requires accurate counting
of neutrons and neutron decay products (protons) from a cold
neutron beam. Such an in-beam lifetime measurement must
overcome the technical challenges of accurately measuring
(i) the relatively low number of neutron decay events in the
presence of background, (ii) the decay detection volume, and
(iii) the mean number of neutrons within the decay detection
volume. Each of these difficulties is directly addressed in this

FIG. 2. Experimental method for measuring lifetime by counting
neutrons and trapped protons.

experiment in a manner similar to that of previous experiments
utilizing the in-beam technique [8,28–30].

An illustration of the experimental method is shown in
Fig. 2. The technique of trapping protons to increase the
signal-to-background was first proposed by Byrne et al. and
is described in detail elsewhere [28,31]. A trapping region
of length L intercepts the entire neutron beam. Within the
volume of this region, neutron decay is observed by detecting
decay protons with an efficiency ϵp. The neutron beam is
characterized by a velocity-dependent fluence rate I (v). The
mean number of neutrons in the trap at any time is given by

Nn = L

∫

A

∫
daI (v)

1
v
dv, (3)

where A is the trap cross-sectional area having nonzero fluence.
Thus, the rate at which decay events are detected Ṅp is

Ṅp = τ−1ϵpL

∫

A

∫
daI (v)

1
v
dv. (4)

After leaving the trap, the neutron beam passes through
a thin detector whose efficiency for detecting a low-energy
neutron is proportional to 1/v. Following the usual convention
used in thermal neutron physics, we define the efficiency for
the neutron detector ϵo as the ratio of the detected reaction-
product rate to the neutron rate incident on a 6LiF deposit for
neutrons with a velocity vo = 2200 m/s. The corresponding
efficiency for neutrons of other velocities is ϵovo/v. Therefore,
the total charged-particle count rate, denoted Ṅα+t to indicate
the neutron capture reaction products, is

Ṅα+t = ϵovo

∫

A

∫
daI (v)

1
v
dv. (5)

The integrals in Eqs. (4) and (5) are identical. The velocity
dependence of the neutron detector efficiency compensates
for the fact that the faster neutrons in the beam spend less
time in the decay volume. This cancellation is exact given
two assumptions: (i) the deposit is thin (0.4% of the neutrons
are absorbed) and the neutron absorption cross section in the
6LiF target is exactly proportional to 1/v and (ii) the neutron
beam intensity and its velocity dependence do not change
between the trap and the target. The deviation from the 1/v
law in the 6Li(n,t)4He cross section has been shown to be
less than 0.01% [32], and changes in the neutron beam due
to decay-in-flight and residual gas interaction are less than
0.001%. The cancellation allows this technique to make full
use of the broad neutron energy spectrum from the reactor cold
source. Thus, we obtain an expression for the neutron lifetime
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precision of the data [14]. If successful, this would make
possible another independent check of CKM unitarity using the
first column: |Vud|2 + |Vcd|2 + |Vtd|2 = 1. Thus, a precision
measurement of |Vud| can be used for two separate checks of
CKM unitarity.

Furthermore, assuming unitarity of the upper row of the
CKM matrix and the Wolfenstein parametrization, a precision
determination of |Vud| can be used to infer the Wolfenstein
parameter λW = Vud, which is needed for the tests of the
unitarity triangles at B factories. The phenomena considered as
possible causes for violation of CKM unitarity include right-
handed currents [15], supersymmetry [16], exotic fermions
[17,18], and additional Z bosons [19,20] among others. One
notes that while the sum above is dominated by |Vud|, the
contribution of |Vus| is significant, and there remains a question
of the reliability of the currently accepted value and its
uncertainty. There has been recent discussion regarding the
value of |Vus| from kaon decay based on new results and
evaluations of kaon semileptonic decay rates. If one were to
use the value of |Vus| from some recent evaluations [21], the
discrepancy with unitarity disappears. Efforts are now under
way to clarify this situation using kaon decay data from several
collaborations [22]. There are also renewed theoretical efforts
to attempt to extract |Vus| from hyperon decay [23].

B. Neutron lifetime and nucleosynthesis

The neutron lifetime also influences the predictions of the
theory of big-bang nucleosynthesis (BBN) for the primordial
helium abundance in the universe and the number of different
types of light neutrinos Nν . Since a large fraction of the
uncertainty in the BBN prediction for the primordial 4He/H
abundance ratio comes from the uncertainty of the neutron
lifetime [24,25], improved neutron lifetime measurements
are useful for sharpening the BBN prediction. With the
recent high-precision determination of the cosmic baryon
density reported by the Wilkinson Microwave Anisotropy
Probe (WMAP) measurement of the microwave background
[26], the BBN prediction for the 4He abundance is higher
than the value inferred from observation [27]. However,
systematic uncertainties in the astronomical determinations
of the 4He/H ratio are still believed to dominate the difference
between theory and observation. Furthermore, comparisons of
BBN helium abundance calculations to observation using the
number of known light neutrinos (Nν = 3) are consistent with
the value derived from Z decay [10].

II. EXPERIMENTAL METHOD AND APPARATUS

A. The in-beam technique

The measurement presented here requires accurate counting
of neutrons and neutron decay products (protons) from a cold
neutron beam. Such an in-beam lifetime measurement must
overcome the technical challenges of accurately measuring
(i) the relatively low number of neutron decay events in the
presence of background, (ii) the decay detection volume, and
(iii) the mean number of neutrons within the decay detection
volume. Each of these difficulties is directly addressed in this
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experiment in a manner similar to that of previous experiments
utilizing the in-beam technique [8,28–30].

An illustration of the experimental method is shown in
Fig. 2. The technique of trapping protons to increase the
signal-to-background was first proposed by Byrne et al. and
is described in detail elsewhere [28,31]. A trapping region
of length L intercepts the entire neutron beam. Within the
volume of this region, neutron decay is observed by detecting
decay protons with an efficiency ϵp. The neutron beam is
characterized by a velocity-dependent fluence rate I (v). The
mean number of neutrons in the trap at any time is given by

Nn = L

∫

A

∫
daI (v)

1
v
dv, (3)

where A is the trap cross-sectional area having nonzero fluence.
Thus, the rate at which decay events are detected Ṅp is

Ṅp = τ−1ϵpL

∫

A

∫
daI (v)

1
v
dv. (4)

After leaving the trap, the neutron beam passes through
a thin detector whose efficiency for detecting a low-energy
neutron is proportional to 1/v. Following the usual convention
used in thermal neutron physics, we define the efficiency for
the neutron detector ϵo as the ratio of the detected reaction-
product rate to the neutron rate incident on a 6LiF deposit for
neutrons with a velocity vo = 2200 m/s. The corresponding
efficiency for neutrons of other velocities is ϵovo/v. Therefore,
the total charged-particle count rate, denoted Ṅα+t to indicate
the neutron capture reaction products, is

Ṅα+t = ϵovo

∫

A

∫
daI (v)

1
v
dv. (5)

The integrals in Eqs. (4) and (5) are identical. The velocity
dependence of the neutron detector efficiency compensates
for the fact that the faster neutrons in the beam spend less
time in the decay volume. This cancellation is exact given
two assumptions: (i) the deposit is thin (0.4% of the neutrons
are absorbed) and the neutron absorption cross section in the
6LiF target is exactly proportional to 1/v and (ii) the neutron
beam intensity and its velocity dependence do not change
between the trap and the target. The deviation from the 1/v
law in the 6Li(n,t)4He cross section has been shown to be
less than 0.01% [32], and changes in the neutron beam due
to decay-in-flight and residual gas interaction are less than
0.001%. The cancellation allows this technique to make full
use of the broad neutron energy spectrum from the reactor cold
source. Thus, we obtain an expression for the neutron lifetime
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precision of the data [14]. If successful, this would make
possible another independent check of CKM unitarity using the
first column: |Vud|2 + |Vcd|2 + |Vtd|2 = 1. Thus, a precision
measurement of |Vud| can be used for two separate checks of
CKM unitarity.

Furthermore, assuming unitarity of the upper row of the
CKM matrix and the Wolfenstein parametrization, a precision
determination of |Vud| can be used to infer the Wolfenstein
parameter λW = Vud, which is needed for the tests of the
unitarity triangles at B factories. The phenomena considered as
possible causes for violation of CKM unitarity include right-
handed currents [15], supersymmetry [16], exotic fermions
[17,18], and additional Z bosons [19,20] among others. One
notes that while the sum above is dominated by |Vud|, the
contribution of |Vus| is significant, and there remains a question
of the reliability of the currently accepted value and its
uncertainty. There has been recent discussion regarding the
value of |Vus| from kaon decay based on new results and
evaluations of kaon semileptonic decay rates. If one were to
use the value of |Vus| from some recent evaluations [21], the
discrepancy with unitarity disappears. Efforts are now under
way to clarify this situation using kaon decay data from several
collaborations [22]. There are also renewed theoretical efforts
to attempt to extract |Vus| from hyperon decay [23].

B. Neutron lifetime and nucleosynthesis

The neutron lifetime also influences the predictions of the
theory of big-bang nucleosynthesis (BBN) for the primordial
helium abundance in the universe and the number of different
types of light neutrinos Nν . Since a large fraction of the
uncertainty in the BBN prediction for the primordial 4He/H
abundance ratio comes from the uncertainty of the neutron
lifetime [24,25], improved neutron lifetime measurements
are useful for sharpening the BBN prediction. With the
recent high-precision determination of the cosmic baryon
density reported by the Wilkinson Microwave Anisotropy
Probe (WMAP) measurement of the microwave background
[26], the BBN prediction for the 4He abundance is higher
than the value inferred from observation [27]. However,
systematic uncertainties in the astronomical determinations
of the 4He/H ratio are still believed to dominate the difference
between theory and observation. Furthermore, comparisons of
BBN helium abundance calculations to observation using the
number of known light neutrinos (Nν = 3) are consistent with
the value derived from Z decay [10].

II. EXPERIMENTAL METHOD AND APPARATUS

A. The in-beam technique

The measurement presented here requires accurate counting
of neutrons and neutron decay products (protons) from a cold
neutron beam. Such an in-beam lifetime measurement must
overcome the technical challenges of accurately measuring
(i) the relatively low number of neutron decay events in the
presence of background, (ii) the decay detection volume, and
(iii) the mean number of neutrons within the decay detection
volume. Each of these difficulties is directly addressed in this

FIG. 2. Experimental method for measuring lifetime by counting
neutrons and trapped protons.

experiment in a manner similar to that of previous experiments
utilizing the in-beam technique [8,28–30].

An illustration of the experimental method is shown in
Fig. 2. The technique of trapping protons to increase the
signal-to-background was first proposed by Byrne et al. and
is described in detail elsewhere [28,31]. A trapping region
of length L intercepts the entire neutron beam. Within the
volume of this region, neutron decay is observed by detecting
decay protons with an efficiency ϵp. The neutron beam is
characterized by a velocity-dependent fluence rate I (v). The
mean number of neutrons in the trap at any time is given by

Nn = L

∫

A

∫
daI (v)

1
v
dv, (3)

where A is the trap cross-sectional area having nonzero fluence.
Thus, the rate at which decay events are detected Ṅp is

Ṅp = τ−1ϵpL

∫

A

∫
daI (v)

1
v
dv. (4)

After leaving the trap, the neutron beam passes through
a thin detector whose efficiency for detecting a low-energy
neutron is proportional to 1/v. Following the usual convention
used in thermal neutron physics, we define the efficiency for
the neutron detector ϵo as the ratio of the detected reaction-
product rate to the neutron rate incident on a 6LiF deposit for
neutrons with a velocity vo = 2200 m/s. The corresponding
efficiency for neutrons of other velocities is ϵovo/v. Therefore,
the total charged-particle count rate, denoted Ṅα+t to indicate
the neutron capture reaction products, is

Ṅα+t = ϵovo

∫

A

∫
daI (v)

1
v
dv. (5)

The integrals in Eqs. (4) and (5) are identical. The velocity
dependence of the neutron detector efficiency compensates
for the fact that the faster neutrons in the beam spend less
time in the decay volume. This cancellation is exact given
two assumptions: (i) the deposit is thin (0.4% of the neutrons
are absorbed) and the neutron absorption cross section in the
6LiF target is exactly proportional to 1/v and (ii) the neutron
beam intensity and its velocity dependence do not change
between the trap and the target. The deviation from the 1/v
law in the 6Li(n,t)4He cross section has been shown to be
less than 0.01% [32], and changes in the neutron beam due
to decay-in-flight and residual gas interaction are less than
0.001%. The cancellation allows this technique to make full
use of the broad neutron energy spectrum from the reactor cold
source. Thus, we obtain an expression for the neutron lifetime
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precision of the data [14]. If successful, this would make
possible another independent check of CKM unitarity using the
first column: |Vud|2 + |Vcd|2 + |Vtd|2 = 1. Thus, a precision
measurement of |Vud| can be used for two separate checks of
CKM unitarity.

Furthermore, assuming unitarity of the upper row of the
CKM matrix and the Wolfenstein parametrization, a precision
determination of |Vud| can be used to infer the Wolfenstein
parameter λW = Vud, which is needed for the tests of the
unitarity triangles at B factories. The phenomena considered as
possible causes for violation of CKM unitarity include right-
handed currents [15], supersymmetry [16], exotic fermions
[17,18], and additional Z bosons [19,20] among others. One
notes that while the sum above is dominated by |Vud|, the
contribution of |Vus| is significant, and there remains a question
of the reliability of the currently accepted value and its
uncertainty. There has been recent discussion regarding the
value of |Vus| from kaon decay based on new results and
evaluations of kaon semileptonic decay rates. If one were to
use the value of |Vus| from some recent evaluations [21], the
discrepancy with unitarity disappears. Efforts are now under
way to clarify this situation using kaon decay data from several
collaborations [22]. There are also renewed theoretical efforts
to attempt to extract |Vus| from hyperon decay [23].

B. Neutron lifetime and nucleosynthesis

The neutron lifetime also influences the predictions of the
theory of big-bang nucleosynthesis (BBN) for the primordial
helium abundance in the universe and the number of different
types of light neutrinos Nν . Since a large fraction of the
uncertainty in the BBN prediction for the primordial 4He/H
abundance ratio comes from the uncertainty of the neutron
lifetime [24,25], improved neutron lifetime measurements
are useful for sharpening the BBN prediction. With the
recent high-precision determination of the cosmic baryon
density reported by the Wilkinson Microwave Anisotropy
Probe (WMAP) measurement of the microwave background
[26], the BBN prediction for the 4He abundance is higher
than the value inferred from observation [27]. However,
systematic uncertainties in the astronomical determinations
of the 4He/H ratio are still believed to dominate the difference
between theory and observation. Furthermore, comparisons of
BBN helium abundance calculations to observation using the
number of known light neutrinos (Nν = 3) are consistent with
the value derived from Z decay [10].

II. EXPERIMENTAL METHOD AND APPARATUS

A. The in-beam technique

The measurement presented here requires accurate counting
of neutrons and neutron decay products (protons) from a cold
neutron beam. Such an in-beam lifetime measurement must
overcome the technical challenges of accurately measuring
(i) the relatively low number of neutron decay events in the
presence of background, (ii) the decay detection volume, and
(iii) the mean number of neutrons within the decay detection
volume. Each of these difficulties is directly addressed in this

FIG. 2. Experimental method for measuring lifetime by counting
neutrons and trapped protons.

experiment in a manner similar to that of previous experiments
utilizing the in-beam technique [8,28–30].

An illustration of the experimental method is shown in
Fig. 2. The technique of trapping protons to increase the
signal-to-background was first proposed by Byrne et al. and
is described in detail elsewhere [28,31]. A trapping region
of length L intercepts the entire neutron beam. Within the
volume of this region, neutron decay is observed by detecting
decay protons with an efficiency ϵp. The neutron beam is
characterized by a velocity-dependent fluence rate I (v). The
mean number of neutrons in the trap at any time is given by

Nn = L

∫

A

∫
daI (v)

1
v
dv, (3)

where A is the trap cross-sectional area having nonzero fluence.
Thus, the rate at which decay events are detected Ṅp is

Ṅp = τ−1ϵpL

∫

A

∫
daI (v)

1
v
dv. (4)

After leaving the trap, the neutron beam passes through
a thin detector whose efficiency for detecting a low-energy
neutron is proportional to 1/v. Following the usual convention
used in thermal neutron physics, we define the efficiency for
the neutron detector ϵo as the ratio of the detected reaction-
product rate to the neutron rate incident on a 6LiF deposit for
neutrons with a velocity vo = 2200 m/s. The corresponding
efficiency for neutrons of other velocities is ϵovo/v. Therefore,
the total charged-particle count rate, denoted Ṅα+t to indicate
the neutron capture reaction products, is

Ṅα+t = ϵovo

∫

A

∫
daI (v)

1
v
dv. (5)

The integrals in Eqs. (4) and (5) are identical. The velocity
dependence of the neutron detector efficiency compensates
for the fact that the faster neutrons in the beam spend less
time in the decay volume. This cancellation is exact given
two assumptions: (i) the deposit is thin (0.4% of the neutrons
are absorbed) and the neutron absorption cross section in the
6LiF target is exactly proportional to 1/v and (ii) the neutron
beam intensity and its velocity dependence do not change
between the trap and the target. The deviation from the 1/v
law in the 6Li(n,t)4He cross section has been shown to be
less than 0.01% [32], and changes in the neutron beam due
to decay-in-flight and residual gas interaction are less than
0.001%. The cancellation allows this technique to make full
use of the broad neutron energy spectrum from the reactor cold
source. Thus, we obtain an expression for the neutron lifetime
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τn in terms of measurable quantities

τn = L

Ṅp

Ṅα+t

ϵo

ϵp

vo

. (6)

The challenge of the in-beam technique is to accurately
measure the quantities Ṅα+t , Ṅp, L, ϵp, and ϵo.

B. Neutron beamline

The experiment was performed using cold neutrons at the
National Institute of Standards and Technology Center for
Neutron Research (NCNR). The NCNR operates a 20 MW,
heavy-water-moderated research reactor that provides fission
neutrons moderated to thermal energies by the D2O primary
reactor coolant. Cold neutrons were produced by a cold neutron
moderator situated adjacent to the reactor core. It consisted of a
spherical shell of liquid hydrogen maintained at a temperature
of 20 K. Neutrons emerged from the cold source in a pseudo-
Maxwellian distribution with an effective temperature of 40 K.
The slower average velocity of cold neutrons increases the
number of neutrons that decay in the fiducial volume of the
proton trap.

Neutron guides coated with 58Ni efficiently transported the
cold neutrons approximately 68 m from the cold source to the
experimental area at the end of neutron guide 6 (NG-6) [33]
in the NCNR Guide Hall. The average thermal-equivalent
neutron fluence rate was measured to be 1.4 × 109 cm−2 s−1

at the local guide shutter at the NG-6 end station. Immediately
after exiting the guide shutter, the neutron beam passed through
a beam filter of single-crystal bismuth cooled to liquid nitrogen
temperature. The filter attenuated fast neutrons and γ rays
originating from the reactor core that would have contributed to
the background signal. Cooling the filter elements to 77 K sig-
nificantly increased the transmission of cold neutrons through
the filter by reducing the scattering from phonons in the solid.

After the neutron beam exited the filter, it was collimated
by two 6LiF apertures, which are almost totally absorbing
for low-energy neutrons. The diameter of the first aperture
(C1) was varied as a systematic check on the effect of the
beam diameter on the measured lifetime. The second one (C2)
had a diameter of 8.4 mm and was not changed during the
measurement. In between these two beam-defining apertures
were several 6LiF beam scrapers, which removed scattered and
highly divergent neutrons. The scrapers were mounted inside
a 4.9 m He-filled flight tube wrapped with 10B-loaded rubber.
After passing through C2, the beam entered a 1 m section
of preguide and then entered the vacuum system through
the silicon window of a 7 mm diameter quartz guide tube.
After passing through the trap, the beam traveled 83 cm to the
neutron counter. It exited the vacuum system through a silicon
window and was stopped in a 6LiF beam dump.

The vacuum system consisted of three main sections: the
proton detector, the bore of the superconducting solenoid
(where the proton trap resided), and the neutron detector.
Rough vacuum was achieved by an oil-free turbo pump,
and ultra high vacuum (UHV) was maintained by two ion
pumps. All parts of the system that could withstand typical
UHV bake-out temperatures were routinely baked after every

exposure of the vacuum system to air. The solenoid bore is
the most notable exception to that procedure. The bore could
be isolated from both the proton detector end and neutron
detector end by gate valves, thus allowing access to either end
without the necessity of warming up and venting the inner
bore. The pressure in the system measured at the ion pumps
was typically 10−9 mbar. It was reasonably assumed that the
pressure at the trap was significantly below that value because
of the cryopumping of the solenoid bore.

C. Proton counting

The detection of protons was accomplished through the use
of a silicon detector and a proton trap, which consists of a 4.6 T
magnetic field along the beam axis and an annular electrostatic
trap composed of sixteen electrodes segmented along the beam
direction. In trapping mode, these electrodes impose a potential
well over a volume of the neutron beam of depth approximately
+800 eV, which is well above the maximum proton kinetic
energy of 751 eV, and confine the protons axially. Since the
protons from neutron decay have a maximum cyclotron radius
of less than 1 mm in the 4.6 T field, the decay protons are
radially confined as well. The protons from neutron decay
are therefore trapped with unit efficiency except at the ends
of the trap, where potential gradients affect the efficiency.
After a trapping time of order 10 ms, the trapped protons are
ejected from the trap, guided adiabatically along the magnetic
field lines that bend protons out of the neutron beam, and
accelerated onto a detector held at a high negative potential.

1. Proton trap

The ideal proton trap for this experiment would consist of a
perfectly uniform axial magnetic field and an axial electrostatic
square well potential whose height on both ends exceeds the
maximum kinetic energy of neutron decay protons (751 eV).
In this case, the length L of the trap would be well defined, and
all protons created within this length would be trapped with
100% efficiency. One could determine τn by applying Eq. (6)
to the data from a single trap length. However, an exact square
well potential cannot be realized in this experiment. There is a
region near each end of the trap, which we refer to collectively
as the end region, where the electrostatic potential is above
ground but less than the maximum applied voltage. Protons
created in the central, grounded region are always trapped,
but those created in the end region are trapped with less than
100% efficiency. For this reason, the trap is segmented into 16
electrodes, and we vary the trap length. The electrode structure
is assembled in a manner that allows accurate determination
of the segment repeat distance. The lengths of the individual
electrodes, and therefore the changes in the length of the trap,
must be accurately known.

The electrodes for the trap were fabricated from fused
quartz to optical tolerances and coated with a thin conducting
layer of gold. Adjacent segments were separated by 2 mm
thick insulating spacers also made of fused quartz. The
trap is shown in Fig. 3. The length of each electrode and
spacer was measured at room temperature using a coordinate

055502-4

number of particles per unit of length



Measuring the lifetime: 
Bottle experiments

 

 
Fig. 1. Layout of the UCN beam line and trap used for these measurements 

 
Fig. 2. Left) Nine step unloading time distributions. Right) Three step unloading distributions. 

The times have been shifted to align the short (red) and long (blue) distributions.  These 
distributions include both the neutron signals and backgrounds. 
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with this trap, the filling was performed from the bot-
tom [12,13] through the magnetic shutter. This 
method suffers from serious shortcomings since neu-
trons are accelerated by the magnetic field gradient 
produced by the shutter. For the measurements pre-
sented here, a cylindrical lift located above the trap was 
used (Fig. 1). The cylinder is made of aluminum and its 
inner surfaces were covered with Fomblin grease. A 
disk of polyethylene was mounted inside the cylinder 
at an adjustable height to absorb UCN with energies 
above a given cut-off. The bottom cup of the lift can be 
separated from the cylindrical part for filling and emp-
tying the lift volume. Below the trap, the solenoid is 
used as a fast magnetic shutter to close and open the 
trap. The counting of UCN is performed with a 3He de-
tector, located 47 cm below the magnetic shutter, hav-
ing a 100 µm thick aluminum entrance window. The 
lift and the trap are contained inside a vacuum cham-
ber where the typical pressure was 1.2×10-4 Pa. 

 
FIG. 1: Vertical section of the experimental setup showing 
the main parts: the lift (while being filled), the magneto-
gravitational trap, the solenoidal magnetic shutter with its 
yoke, the outer solenoid coil and the UCN detector. 

 
At any stage during a cycle, neutrons escaping the 

trap can be monitored with the 3He detector. Since the 
UCN are initially unpolarized, half of them cannot be 
stored after filling and escape through the bottom to-
wards the detector. This provides a unique possibility 
to measure the number of UCN at the beginning of 
each filling. During the experiment the neutrons de-
tected during the first 120 s were used for monitoring 
and data normalization. Other details about the trap 
filling sequence, including the conditions required to 
avoid heating of the neutrons, have been reported 
elsewhere [14]. Once the trap was filled, neutrons 
were stored for fixed storage times, after which the 

magnetic shutter was switched off to count the neu-
trons remaining in the trap. The neutrons were 
counted during “emptying” intervals of fixed duration. 
The background was then measured before starting a 
new cycle. In the measurements reported here, the 
counting of neutrons was integrated over 1 s time bins. 

There are two possible sources of UCN losses in 
magneto-gravitational traps namely, the losses due to 
the flip of the neutron magnetic moment relative to 
the direction of the magnetic field and the losses due 
to the up-scattering of UCNs by the residual gas in the 
chamber. In this setup, UCNs that have the magnetic 
moment flipped during storage cannot be reflected by 
the magnetic barrier of the shutter. They will eventu-
ally reach the walls and either be reflected, captured 
or up-scattered. Those which are reflected will, after 
some collisions, fall down through the shutter aper-
ture towards the detector. 

After reaching equilibrium, the number of trapped 
neutrons, NT(t), and the number spin flipped neutrons 
that leaked and were detected, NL(t), can be described 
by the following set of differential equations 

�̇�𝑇(𝑡) = −𝜆𝑛𝑁𝑇(𝑡) − 𝜆𝑆𝐹𝑁𝑇(𝑡)               (1) 
�̇�𝐿(𝑡) = 𝜖𝜆𝑆𝐹𝑁𝑇(𝑡)                                     (2) 

where On and OSF are respectively the neutron decay 
constant and the spin-flip constant and ϵ� is the prob-
ability for a neutron to leave the trap after its spin has 
flipped. These equations assume that the time to exit 
the trap for spin-flipped neutrons is much smaller 
than the neutron lifetime. Assuming that the value for� 
ϵ� is constant, one can solve these equations for the de-
cay constants 

𝜆𝑛 = 𝜆𝑆 − 𝜆𝑆𝐹 =  𝜆𝑆(1 − 𝛼𝑆𝐹)            (3) 
where OS is the storage constant and DSF is the correc-
tion associated to spin-flip. With the initial conditions, 
NT(0)=N0 and NL(0)=0, one gets, after a storage time 
T, 

𝜆𝑆 =
1
𝑇

ln [
𝑁0

𝑁𝑇(𝑇)]                          (4) 
and 

𝛼𝑆𝐹 =
1
𝜖

⋅
𝑁𝐿(𝑇)

𝑁0 − 𝑁𝑇(𝑇)
                      (5) 

One can see from Eq. (5) that the sensitivity of the 
correction DSF to the collection efficiency of the spin-
flipped neutrons, ϵ, is driven by a ratio which is sup-
pressed for  𝑁𝐿(𝑇) ≪ 𝑁0 − 𝑁𝑇(𝑇) . In other words, 
when the leaks are small, the precision requirements 
on the collection efficiency become also weaker. 

Two campaigns of measurements, referred to below 
as runs A and B, have been carried out with the mag-
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What can cause the 
difference?

• About 4 sigma difference, that's huge 

• Beam experiment: we measure the # of protons,  
which should be exactly the same as the neutrons 

• Bottle experiment: we measure the # of neutrons,  
and we measure more decays than protons 

• Does the neutron have another way of decay?



Explanations
• Maybe some unrecognised systematic errors 

• The only other possibility is some new physics 

• Baryon number not conserved? 

• Dark matter? We don't know of any possible 
outcomes in the SM 

• Mirror particles?



Dark matter
What's dark matter? We don't know. It interacts with 
ordinary matter gravitationally, and does not 
interact with electromagnetic waves. "Invisible". 

From astronomical obervations we know it for sure, 
that some form of dark matter is present in our 
universe. 

Most likely it's made of some yet unknown 
particles. 



Possible decays

Dark Matter Interpretation of the Neutron Decay Anomaly

Bartosz Fornal and Benjamı́n Grinstein
Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

(Dated: January 16, 2018)

There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments.
We propose to explain this anomaly by a dark decay channel for the neutron, involving a dark sector particle in
the final state. If this particle is stable, it can be the dark matter. Its mass is close to the neutron mass, suggesting
a connection between dark and baryonic matter. In the most interesting scenario a monochromatic photon with
energy in the range 0.782 MeV – 1.664 MeV and branching fraction 1% is expected in the final state. We
construct representative particle physics models consistent with all experimental constraints.

I. INTRODUCTION

The neutron is one of the fundamental building blocks of
matter. Along with the proton and electron it makes up most
of the visible universe. Without it, complex atomic nuclei sim-
ply would not have formed. Although the neutron was discov-
ered over eighty years ago [1] and has been studied intensively
thereafter, its precise lifetime is still an open question [2]. The
dominant neutron decay mode is � decay,

n ! p+ e�+ ⌫̄e , (1)

theoretically described by the matrix element

M = [GV p̄ �µn�GA p̄ �5�µn ] [ ē �µ(1� �5)⌫ ] . (2)

Although the vector coupling GV is measured accurately in
superallowed nuclear � decays [3], due to the uncertainty in
calculating the matrix elements of axial vector currents the
coupling GA cannot be precisely extracted from other nuclear
decays, resulting in a lack of an accurate theoretical prediction
for the neutron lifetime.

There are two qualitatively different types of neutron life-
time measurements: bottle and beam experiments.

In the first method, ultracold neutrons are stored in a con-
tainer for a time comparable to the neutron lifetime. The re-
maining neutrons that did not decay are counted and fit to a
decaying exponential, exp(�t/⌧n). The average from the five
bottle experiments included in the Particle Data Group (PDG)
[4] world average [5–9] is

⌧bottlen = 879.6± 0.6 s . (3)

Recent measurements using trapping techniques [10, 11] yield
a neutron lifetime within 2.0� of the average in Eq. (3).

In the beam method, both the number of neutrons N in a
beam and the protons resulting from � decays are counted,
and the lifetime is obtained from the decay rate, dN/dt =
�N/⌧n. This yields a considerably longer neutron lifetime;
the average from the two beam experiments included in the
PDG average [12, 13] is

⌧beamn = 888.0± 2.0 s . (4)

The discrepancy between the two results is 4.0�. This sug-
gests that either one of the measurement methods suffers from
an uncontrolled systematic error, or the theory itself provides
inaccurate predictions.

In this letter we focus on the latter possibility. We as-
sume that the discrepancy between the neutron lifetime mea-
surements arises from an incomplete theoretical description
of neutron decay and we investigate how the Standard Model
(SM) can be extended to account for the anomaly.

II. NEUTRON DARK DECAY

Since in the beam experiments neutron decay is observed
by detecting decay protons, the lifetime measured in those ex-
periments is related to the neutron lifetime by

⌧beamn =
⌧n

Br(n ! p+ anything)
. (5)

In the SM the branching fraction (Br), dominated by � decay,
is 100% and the two lifetimes are the same. The neutron decay
rate obtained from bottle experiments is

�n =
1

⌧n
' 7.5⇥ 10�28 GeV. (6)

The discrepancy �⌧n ' 8.4 s between the values measured in
bottle and beam experiments corresponds to

��exp
n = �bottle

n � �beam
n ' 7.1⇥ 10�30 GeV. (7)

We propose that this difference be explained by the exis-
tence of a dark decay channel for the neutron, which makes
Br(n ! p+ anything) ⇡ 99%.1 There are two qualitatively
different scenarios for the new dark decay channel, depending
on whether the final state consists entirely of dark particles or
contains visible ones:

n ! invisible + visible , (8)
n ! invisible . (9)

Here the label “invisible” includes dark sector particles, as
well as neutrinos. Such decays are described by an effective
operator O = Xn, where n is the neutron and X is a spin
1/2 operator, possibly composite, e.g. X = �1�2...�k, with
the �’s being fermions and bosons combining into spin 1/2.

1 It was suggested in [14] that the neutron lifetime discrepancy might be
caused by hypothetical oscillations of neutrons into mirror neutrons [15].
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Violates the conservation of baryon number! The proton 
could also decay?  
 
 
There could be some nuclear (Z,A) -> (Z,A-1) decays? 

The mass of the DM particle: 

2

From an experimental point of view, channel (8) offers a de-
tection possibility, whereas channel (9) relies on higher order
radiative processes. In Sec. III we provide examples of both.
Proton decay constraints
The operator O violates baryon number and generically gives
rise to proton decay via

p ! n⇤ + e+ + ⌫e , (10)

followed by the decay of n⇤ through the channel (8) or (9)
and has to be suppressed [16]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of the neutron decay process, say Mf , is
larger than mp � me. On the other hand, for the neutron to
decay, Mf must be smaller than the neutron mass, therefore
the following condition is required:

mp �me < Mf < mn . (11)

Nuclear physics bounds
In general, the decay channels (8) and (9) could trigger nuclear
transitions from (Z,A) to (Z,A � 1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1). Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf . (12)

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus Eqs. (11) and (12) give

937.900 MeV < min
�
Mf 0

 
 Mf < 939.565 MeV . (13)

The condition in Eq. (13) circumvents all nuclear decay limits
listed in PDG [4], including the most severe ones [17–19].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (13) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (14)

Provided there are no other decay channels for �, Eq. (14) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (13). Both � and � can be DM
candidates, provided their masses are smaller than mp +me.

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [20, 21].

III. MODEL-INDEPENDENT ANALYSIS

Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are: (A) n ! ��,
(B) n ! � e+e�, (C) n ! ��, (D) all of the above with
additional dark particle(s) and/or photon(s). We analyze the
possibilities (A) – (C) below.

(A) Neutron ! dark matter + photon

This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (13)
and (14) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV (15)

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (16)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [22] mea-
sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an explicit baryon number violating in-
teraction �n, and an interaction �n � mediated by a mixing
between the neutron and �. An example of such a theory is
given by the effective Lagrangian
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where gn'�3.826 is the neutron g-factor and " is the mixing
parameter with dimension of mass. The term corresponding
to n ! �� is obtained by transforming Eq. (17) to the mass
eigenstate basis and, for " ⌧ mn �m�, yields
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.
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From an experimental point of view, channel (8) offers a de-
tection possibility, whereas channel (9) relies on higher order
radiative processes. In Sec. III we provide examples of both.
Proton decay constraints
The operator O violates baryon number and generically gives
rise to proton decay via

p ! n⇤ + e+ + ⌫e , (10)

followed by the decay of n⇤ through the channel (8) or (9)
and has to be suppressed [16]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of the neutron decay process, say Mf , is
larger than mp � me. On the other hand, for the neutron to
decay, Mf must be smaller than the neutron mass, therefore
the following condition is required:

mp �me < Mf < mn . (11)

Nuclear physics bounds
In general, the decay channels (8) and (9) could trigger nuclear
transitions from (Z,A) to (Z,A � 1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1). Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf . (12)

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus Eqs. (11) and (12) give

937.900 MeV < min
�
Mf 0

 
 Mf < 939.565 MeV . (13)

The condition in Eq. (13) circumvents all nuclear decay limits
listed in PDG [4], including the most severe ones [17–19].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (13) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (14)

Provided there are no other decay channels for �, Eq. (14) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (13). Both � and � can be DM
candidates, provided their masses are smaller than mp +me.

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [20, 21].

III. MODEL-INDEPENDENT ANALYSIS

Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are: (A) n ! ��,
(B) n ! � e+e�, (C) n ! ��, (D) all of the above with
additional dark particle(s) and/or photon(s). We analyze the
possibilities (A) – (C) below.

(A) Neutron ! dark matter + photon

This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (13)
and (14) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV (15)

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (16)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [22] mea-
sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an explicit baryon number violating in-
teraction �n, and an interaction �n � mediated by a mixing
between the neutron and �. An example of such a theory is
given by the effective Lagrangian
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where gn'�3.826 is the neutron g-factor and " is the mixing
parameter with dimension of mass. The term corresponding
to n ! �� is obtained by transforming Eq. (17) to the mass
eigenstate basis and, for " ⌧ mn �m�, yields
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.
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From an experimental point of view, channel (8) offers a de-
tection possibility, whereas channel (9) relies on higher order
radiative processes. In Sec. III we provide examples of both.
Proton decay constraints
The operator O violates baryon number and generically gives
rise to proton decay via

p ! n⇤ + e+ + ⌫e , (10)

followed by the decay of n⇤ through the channel (8) or (9)
and has to be suppressed [16]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of the neutron decay process, say Mf , is
larger than mp � me. On the other hand, for the neutron to
decay, Mf must be smaller than the neutron mass, therefore
the following condition is required:

mp �me < Mf < mn . (11)

Nuclear physics bounds
In general, the decay channels (8) and (9) could trigger nuclear
transitions from (Z,A) to (Z,A � 1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1). Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf . (12)

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus Eqs. (11) and (12) give

937.900 MeV < min
�
Mf 0

 
 Mf < 939.565 MeV . (13)

The condition in Eq. (13) circumvents all nuclear decay limits
listed in PDG [4], including the most severe ones [17–19].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (13) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (14)

Provided there are no other decay channels for �, Eq. (14) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (13). Both � and � can be DM
candidates, provided their masses are smaller than mp +me.

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [20, 21].

III. MODEL-INDEPENDENT ANALYSIS

Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are: (A) n ! ��,
(B) n ! � e+e�, (C) n ! ��, (D) all of the above with
additional dark particle(s) and/or photon(s). We analyze the
possibilities (A) – (C) below.

(A) Neutron ! dark matter + photon

This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (13)
and (14) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV (15)

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (16)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [22] mea-
sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an explicit baryon number violating in-
teraction �n, and an interaction �n � mediated by a mixing
between the neutron and �. An example of such a theory is
given by the effective Lagrangian
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where gn'�3.826 is the neutron g-factor and " is the mixing
parameter with dimension of mass. The term corresponding
to n ! �� is obtained by transforming Eq. (17) to the mass
eigenstate basis and, for " ⌧ mn �m�, yields
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��n!�� =
g2ne

2

8⇡

✓
1�

m2
�

m2
n

◆3 mn "2

(mn �m�)2

⇡ ��exp
n

�
1+x
2

�3⇣ 1�x
1.8⇥10�3

⌘⇣
" [GeV]

9.3⇥10�14

⌘2
, (19)

where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.
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From an experimental point of view, channel (8) offers a de-
tection possibility, whereas channel (9) relies on higher order
radiative processes. In Sec. III we provide examples of both.
Proton decay constraints
The operator O violates baryon number and generically gives
rise to proton decay via

p ! n⇤ + e+ + ⌫e , (10)

followed by the decay of n⇤ through the channel (8) or (9)
and has to be suppressed [16]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of the neutron decay process, say Mf , is
larger than mp � me. On the other hand, for the neutron to
decay, Mf must be smaller than the neutron mass, therefore
the following condition is required:

mp �me < Mf < mn . (11)

Nuclear physics bounds
In general, the decay channels (8) and (9) could trigger nuclear
transitions from (Z,A) to (Z,A � 1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1). Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf . (12)

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus Eqs. (11) and (12) give

937.900 MeV < min
�
Mf 0

 
 Mf < 939.565 MeV . (13)

The condition in Eq. (13) circumvents all nuclear decay limits
listed in PDG [4], including the most severe ones [17–19].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (13) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (14)

Provided there are no other decay channels for �, Eq. (14) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (13). Both � and � can be DM
candidates, provided their masses are smaller than mp +me.

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [20, 21].

III. MODEL-INDEPENDENT ANALYSIS

Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are: (A) n ! ��,
(B) n ! � e+e�, (C) n ! ��, (D) all of the above with
additional dark particle(s) and/or photon(s). We analyze the
possibilities (A) – (C) below.

(A) Neutron ! dark matter + photon

This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (13)
and (14) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV (15)

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (16)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [22] mea-
sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an explicit baryon number violating in-
teraction �n, and an interaction �n � mediated by a mixing
between the neutron and �. An example of such a theory is
given by the effective Lagrangian
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where gn'�3.826 is the neutron g-factor and " is the mixing
parameter with dimension of mass. The term corresponding
to n ! �� is obtained by transforming Eq. (17) to the mass
eigenstate basis and, for " ⌧ mn �m�, yields
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.
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From an experimental point of view, channel (8) offers a de-
tection possibility, whereas channel (9) relies on higher order
radiative processes. In Sec. III we provide examples of both.
Proton decay constraints
The operator O violates baryon number and generically gives
rise to proton decay via

p ! n⇤ + e+ + ⌫e , (10)

followed by the decay of n⇤ through the channel (8) or (9)
and has to be suppressed [16]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of the neutron decay process, say Mf , is
larger than mp � me. On the other hand, for the neutron to
decay, Mf must be smaller than the neutron mass, therefore
the following condition is required:

mp �me < Mf < mn . (11)

Nuclear physics bounds
In general, the decay channels (8) and (9) could trigger nuclear
transitions from (Z,A) to (Z,A � 1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1). Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf . (12)

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus Eqs. (11) and (12) give

937.900 MeV < min
�
Mf 0

 
 Mf < 939.565 MeV . (13)

The condition in Eq. (13) circumvents all nuclear decay limits
listed in PDG [4], including the most severe ones [17–19].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (13) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (14)

Provided there are no other decay channels for �, Eq. (14) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (13). Both � and � can be DM
candidates, provided their masses are smaller than mp +me.

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [20, 21].

III. MODEL-INDEPENDENT ANALYSIS

Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are: (A) n ! ��,
(B) n ! � e+e�, (C) n ! ��, (D) all of the above with
additional dark particle(s) and/or photon(s). We analyze the
possibilities (A) – (C) below.

(A) Neutron ! dark matter + photon

This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (13)
and (14) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV (15)

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (16)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [22] mea-
sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an explicit baryon number violating in-
teraction �n, and an interaction �n � mediated by a mixing
between the neutron and �. An example of such a theory is
given by the effective Lagrangian
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where gn'�3.826 is the neutron g-factor and " is the mixing
parameter with dimension of mass. The term corresponding
to n ! �� is obtained by transforming Eq. (17) to the mass
eigenstate basis and, for " ⌧ mn �m�, yields
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.
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The case of n       X + ɣ
We assume that the                            process is 
forbidden, since X is a DM particle. 

The energy of the photon is also discrete (two body 
decay)! 
This kind of decay would make up about 1% of all the 
decays, which is consistant with the experimental data 
(can be estimated)!
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From an experimental point of view, channel (8) offers a de-
tection possibility, whereas channel (9) relies on higher order
radiative processes. In Sec. III we provide examples of both.
Proton decay constraints
The operator O violates baryon number and generically gives
rise to proton decay via

p ! n⇤ + e+ + ⌫e , (10)

followed by the decay of n⇤ through the channel (8) or (9)
and has to be suppressed [16]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of the neutron decay process, say Mf , is
larger than mp � me. On the other hand, for the neutron to
decay, Mf must be smaller than the neutron mass, therefore
the following condition is required:

mp �me < Mf < mn . (11)

Nuclear physics bounds
In general, the decay channels (8) and (9) could trigger nuclear
transitions from (Z,A) to (Z,A � 1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1). Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf . (12)

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus Eqs. (11) and (12) give

937.900 MeV < min
�
Mf 0

 
 Mf < 939.565 MeV . (13)

The condition in Eq. (13) circumvents all nuclear decay limits
listed in PDG [4], including the most severe ones [17–19].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (13) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (14)

Provided there are no other decay channels for �, Eq. (14) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (13). Both � and � can be DM
candidates, provided their masses are smaller than mp +me.

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [20, 21].

III. MODEL-INDEPENDENT ANALYSIS

Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are: (A) n ! ��,
(B) n ! � e+e�, (C) n ! ��, (D) all of the above with
additional dark particle(s) and/or photon(s). We analyze the
possibilities (A) – (C) below.

(A) Neutron ! dark matter + photon

This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (13)
and (14) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV (15)

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (16)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [22] mea-
sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an explicit baryon number violating in-
teraction �n, and an interaction �n � mediated by a mixing
between the neutron and �. An example of such a theory is
given by the effective Lagrangian
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.
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From an experimental point of view, channel (8) offers a de-
tection possibility, whereas channel (9) relies on higher order
radiative processes. In Sec. III we provide examples of both.
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and has to be suppressed [16]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of the neutron decay process, say Mf , is
larger than mp � me. On the other hand, for the neutron to
decay, Mf must be smaller than the neutron mass, therefore
the following condition is required:

mp �me < Mf < mn . (11)
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In general, the decay channels (8) and (9) could trigger nuclear
transitions from (Z,A) to (Z,A � 1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1). Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf . (12)
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from the requirement of 9Be stability, for which �M =
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mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if
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sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (13). Both � and � can be DM
candidates, provided their masses are smaller than mp +me.

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
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and (14) imply that the DM mass is
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We are not aware of any experimental constraints on such
monochromatic photons. The search described in [22] mea-
sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an explicit baryon number violating in-
teraction �n, and an interaction �n � mediated by a mixing
between the neutron and �. An example of such a theory is
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.
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rise to proton decay via
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followed by the decay of n⇤ through the channel (8) or (9)
and has to be suppressed [16]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of the neutron decay process, say Mf , is
larger than mp � me. On the other hand, for the neutron to
decay, Mf must be smaller than the neutron mass, therefore
the following condition is required:

mp �me < Mf < mn . (11)

Nuclear physics bounds
In general, the decay channels (8) and (9) could trigger nuclear
transitions from (Z,A) to (Z,A � 1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1). Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
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Mf 0

 
 Mf . (12)

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus Eqs. (11) and (12) give

937.900 MeV < min
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Mf 0

 
 Mf < 939.565 MeV . (13)

The condition in Eq. (13) circumvents all nuclear decay limits
listed in PDG [4], including the most severe ones [17–19].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (13) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (14)

Provided there are no other decay channels for �, Eq. (14) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (13). Both � and � can be DM
candidates, provided their masses are smaller than mp +me.

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [20, 21].
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Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are: (A) n ! ��,
(B) n ! � e+e�, (C) n ! ��, (D) all of the above with
additional dark particle(s) and/or photon(s). We analyze the
possibilities (A) – (C) below.
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This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (13)
and (14) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV (15)

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (16)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [22] mea-
sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an explicit baryon number violating in-
teraction �n, and an interaction �n � mediated by a mixing
between the neutron and �. An example of such a theory is
given by the effective Lagrangian
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.
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sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
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sured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound in Eq. (15). A particle physics realiza-
tion of this case is provided by model 1 in Sec. IV.

(we neglect the kinetic energy of X)

We should be able to see it with gamma detectors!!!
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ray, J, and a dark matter particle, &. The gamma ray has an allowable energy range of 0.782 to 1.664 MeV, where 
it is bounded from above by the constraint from the stability of 9Be and bounded from below by requiring & to be 
stable. 

Here we report the results of a search for J arising from UCN decaying inside a nickel phosphorous coated 
[12], 560 l stainless steel bottle. The bottle is filled with UCN from the Los Alamos UCN facility[13] 
parasitically during the running of the UCNτ experiment[7], with the source operated in production mode. 
The gamma-rays are detected in a lead shielded, Compton scattering suppressed 140% high purity 
germanium (HPGe) detector [Figure 1]. The Compton scattering suppression is achieved by an anti-
coincidence with an annular bismuth germinate (BGO) detector surrounding the HPGe detector. A gate 
valve placed upstream controlled loading of UCN into the bottle. The background J rates were measured 
with the UCN in production mode and the gate valve closed. 

 

Figure 1: The UCN bottle is installed inline to the existing beamline, and a HPGe detector is placed next to the outer 
wall of the vessel. The UCN gate valve is located upstream of the polarizing solenoid magnet.   

The energy calibration of the HPGe spectrum was obtained from a linear fit to 13 gamma ray lines from 
sources, natural backgrounds and prominent neutron capture lines on 58Ni, 56Fe, and 35Cl. The UCN induced 
gamma-ray spectrum was then constructed by subtracting the background spectrum (gate valve closed) 
from the foreground spectrum (gate valve open). The results of this subtraction are shown in Figure 2. The 
peaks in the spectrum are dominated by neutron capture lines on the Ni-P surface and in the stainless steel 
bulk of the storage vessel. The bulk neutron capture is due to UCN upscattering on the surface of the 
coating. In the region of interest (ROI), we have identified 32 prompt gamma lines from neutron capture 
on 35Cl, 50Cr, 52Cr, 53Cr, 56Fe, 58Ni, 60Ni, 62Ni, 63Ni, and 64Ni.  There were also 2 lines present from the beta 
delayed gamma rays from 24Na, and 56Mn. Nickel is present both in the coating material and in the bulk 
stainless steel. Chlorine is used in surface preparation during the nickel phosphorus coating process, and 
multiple lines outside of the ROI were also identified for Cl. Iron, chromium, and manganese are all 
components in stainless steel. Sodium-24 is produced in the shielding stack, and it is present in both the 
foreground and background measurements. However, due to its long half-life (14.96 hours) and the 
sequential order of the foreground and background measurements, the background subtraction produced a 
small negative peak.   
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The strength of each peak inside the ROI was calibrated using the peaks from the same isotope 
outside of the ROI [14]. A Geant4[15] simulation of the energy dependence of the detector 
efficiency was used to normalize the peak strength. A Gaussian peak with a 4.2 keV full width at 
half max and a normalized peak strength was generated for each peak inside the ROI this way, and 
the sum of all the peaks was then subtracted to obtain the black curve in Figure 2.   

 
Figure 2: Measured and simulated spectra in the allowed energy region (white background).The blue and 
red lines show the Compton scattering suppressed spectra for the measurement with UCN and background 
measurement, respectively.  The dotted line shows the simulated spectra from UCN capture and related 
gamma rays. The grey and black lines show the net UCN signal and the net signal after capture gamma 
subtraction, respectively. The peak plotted with a thick black line centered at 1200 keV shows an example 
of the size of the proposed decay that would be need to explain the anomaly. 
 
To determine the rate of decay into this proposed channel, one needs to know the number of UCN inside 
the storage volume. The UCN density inside this storage volume was measured using the vanadium 
activation method[16,17]. A 1.0 cm diameter foil was mounted on the inside of the wall of the vessel, near 
the detector.  Due to the negative Fermi potential of the 51V, 84% of UCN that intercept the foil are absorbed 
and produce 52V, and a correction is made for neutrons that are upscattered or reflected. Neutron capture 
on 51V produces 52V, which has a beta decay half-life 3.74 minutes, and a 1434 keV J is produced along with 
the beta decay 100% of time. This gamma ray is then detected in the HPGe detector.  The efficiency of the 
germanium detector was normalized by using a 60Co source of known activity (9.3±0.9 kBq) that was 
placed on top of the 51V foil and the rate of 1333 keV J was measured. This accounted for solid angle and 
detector efficiency and gamma ray attenuation in the vessel walls. The results were cross calibrated to the 
measurement by normalizing using upstream 10B/ZnS UCN monitor detectors [18].  The average UCN 
density at beam height in the storage volume for the foreground measurement was U0=9.5±1.3  UCN/cm3, 
where the uncertainty is dominated by the corrections to the 51V capture fraction as in ref. [16]. 
The Ge detector acceptance for gamma rays for each gamma emission position inside the UCN storage 
vessel was measured by scanning the storage volume with the calibrated 60Co source. First, the source was 
scanned along a line through the center of the detector.  This was fitted with the function a/(z-z0)2, where z 
was measured from the cylindrical center of the volume. The constants a and z0 were fitted free 
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Figure 3: The blue points are one sigma limits on gamma ray peaks in the allowed (white) region for neutron decay 
into dark matter. The red points are the number of standard deviations away from the expected signal. The presence 
of a mono-energetic gamma ray is excluded from the entire allowed region by more than 4 sigma. 

In summary, we have used the Los Alamos UCN source[13] to search for monoenergetic gamma rays from 
neutron decay to dark matter, a solution recently proposed to explain the difference between beam and bottle 
neutron lifetime results.[11] Our measurements exclude this possible explanation[11] with a high degree of 
confidence. 
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parameters.  This determined an effective center of the detector relative to the center of the storage vessel.  
Next, a 2D counting rate scan was made in two axes, the axis of the cylinder (y) and an axis normal to z and 
y.  After being normalized to the activity of the source, these data were fitted with a function:  
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The acceptance for gamma rays, A, from neutron decay was obtained by integrating this acceptance over 
the neutron density, assuming a dN/dv ∝ v2 distribution, where v is the neutron velocity and N is the 
neutron density, and accounting for the gravitational distribution of the density[19]: 
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Where U(x,y,z) is the UCN density as a function of position, vmax is the maximum UCN velocity, g is the 
acceleration due to gravity, and the integral is over the volume of the vessel.  A v2dv velocity distribution up 
to a maximum velocity of 600 cm/s (given by the Fermi potential of upstream stainless steel guides[19]) is 
used to determine the height dependence of U� 
The volume averaged detector sensitivity is 88 counts/decay/(UCN/cm3). The branching ratio for UCN 
decay into dark matter needed to explain the difference in the beam and bottle lifetimes is 1.3%. The 
measured density gives an expected rate of 11 mHz, or 0.11 counts/10 s. 
 
In order to estimate the one sigma uncertainty on detecting a peak we have fitted 100 keV segments of the 
spectrum in the allowed region with a straight line.  We have then taken the peak detection limit to be 

3 peakA RMSV'   , where Vpeak is the HPGe spectrum Gaussian peak width in channels, and RMS is the 
root mean square of the residual from the fit. These results exclude the presence of a mono-energetic 
gamma ray from entire allowed region at more than 4 sigma. Nevertheless, 

no sign of such 
photons

(my apologies...)

???
Even the dimension is incorrect... 
It should be (keV)-3/2(s)-2

Gaussian fits with 
linear background on 

100 keV intervals Allowed energy range of the photon



Mirror neutrons
According to the theory of mirror particles, every 
particle would have its mirrored pair. There would 
be a very small mass diference, and the two 
particles would be mixed in reality. 

This has to be examined experimentally. No 
observation to date. Lower limit of n -> n' lifetime:

The phenomenology of the neutron→mirror neutron oscillations is similar
to that of neutral kaon, muon→antimuon and n → ñ oscillation. Starting
from n− n

′

mass matrix
L = ψ̄Mψ, (1)

where spinor

ψ =

⎛

⎝

n

n′

⎞

⎠, (2)

and

M =

⎛

⎝

M δm
δm M

′

⎞

⎠ (3)

we have standard solution for evolution of the mirror neutron component
with the initial number of ordinary neutrons n0:

n
′

(t) = n(0)
δm2

δm2 +∆E2
sin2(

√
∆E2 + δm2 · t). (4)

Here δm is the transition mass and 2∆E = M − M ′ is the mass difference
of the neutron and mirror neutron states. When oscillations take place in
free space the only contribution to ∆E comes from the neutron interaction
with external magnetic field B: 2∆E = µB, where µ = 6 · 10−12 eV/G is
the neutron magnetic moment. Introducing τosc = h̄/δm and ω = ∆E/h̄ we
obtain

n
′

(t) =
n(0)

1 + (ωτosc)2
sin2(

√

1 + (ωτosc)2 · t/τosc), (5)

ω ≈ 4.8× 103 s−1 in the field B = 1 G.
Since experimentally we have always ωτosc ≫ 1, two limiting cases are

possible: ωt ≫ 1 and ωt ≪ 1. In the first case the average of oscillating term
is equal to 1/2, and

n
′

(t) =
1

2(ωτosc)2
. (6)

The second case gives
n

′

(t) = (t/τosc)
2. (7)

The second, more experimentally sensitive situation, is realized when coher-
ent evolution of the wave function ψ takes place in the well magnetically
shielded conditions (from external and the Earth magnetic fields).
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Fig. 3. Instability of the “zero” magnetic field measured with 11 Cs-magnetometers.
Shown is the absolute value of the magnetic field component along the axis of
spectrometer.

Fig. 4. Histogram of θ -measurements. The solid line shows a Gaussian fit. δθst is
the statistical error of each measurement by means both detectors for the following
sequence (t1, t2, t2, t1) at “zero” magnetic field and at the “suppressing” magnetic
field H . The width of distribution is 2σ = 2.21, i.e. it is widened with respect to the
statistical one by the factor 1.1.

i.e. it was on the level of the counting statistical accuracy of mea-
surements.

Fig. 3 shows the instability of the “zero” magnetic field, as mea-
sured with 11 Cs-magnetometers. A level down to about 2 nT was
reached by demagnetization of the shielding and electric isolation
of the spectrometer from the UCN guide coming from the UCN tur-
bine. This has allowed us to suppress both variable and constant
magnetic field components inside the screen, presumably caused
by leakage currents between the neutron turbine and the magnetic
screen.

Jumps in the magnetic field visible in Fig. 3 were caused by
changes of the magnetic conditions close to the spectrometer, such
as movement of a reactor crane from steel and switching of fields
in a nearby experiment. Nonetheless, during all measurements at
“zero” magnetic field its actual value did not exceed 20 nT, corre-
sponding to a value of ωtf less than 0.1, which is still acceptable to
perform the experimental search for neutron–mirror neutron tran-
sitions.

The distribution of values of θ is shown in Fig. 4. Deviations
from the average value were normalized to the statistical error,
thus enabling us to see the broadening of the distribution caused

Fig. 5. Results for the value τ−2
osc obtained from the r-measurements. Uncertainties

for different runs were calculated from the dispersion of values within each run.

by other reasons such as for instance non-reproducibility of the
effective slit area of the closed valve. The actual value of the broad-
ening is only 1.1, determined with statistical accuracy 2.5σ , mean-
ing that the dispersion of θ is still in reasonable agreement with
a purely statistical error of the measurements.

The final result of 10 runs of θ -measurement is:

τ−2
osc,θ = (7.05 ± 5.66) × 10−6 s−2.

Since this result differs from zero only by 1.25 standard deviations,
we interpret this result as a lower limit on the oscillation time,

τosc,θ (90% C.L.) ! 247 s.

As already stated, the accuracy of measurements is higher for the
r-values. Results for the normalized r-values are shown in Fig. 5
for the same period of measurements as in Fig. 3. A fit of this data
by a constant gives the result:

τ−2
osc,r = (+1.29 ± 2.76) × 10−6 s−2.

The χ2-value of the data distribution was equal to 1.37 which is
acceptable for 11 points. Interpreted as a lower limit on the oscil-
lation time we obtain

τosc,r(90% C.L.) ! 414 s.

Both limits are considerably better than the limit established in the
work [16] τosc(95% C.L.) ! 103 s, in particular if one takes into ac-
count that it depends on counting statistic as N1/4. The sensitivity
of the r-measurements to n–n′ oscillations is considerably higher
than of the θ -measurements, which serve as a control measure-
ment.

5. Conclusions

As a result of measurements carried out in this work a new
lower limit for the time of neutron–mirror neutron oscillations was
established:

τosc(90% C.L.) ! 414 s.

This limit is already not too far from the neutron lifetime but
might still be too low to provide restriction of the mechanism of
appearance of high-energy protons above the GZK-cutoff in cosmic
radiation due to n–n′ oscillations.

In this work it was shown that UCN storage is indeed a very
effective experimental method to search for the n–n′ transitions.
An improvement by a factor 2 may be reached due to increasing
the storage volume to a trap diameter of 1 m. Another factor 3 oc-
curs when a UCN density of 103 cm−3 will be available from new
powerful UCN sources.



Conclusion
• There is a 4 sigma difference in the lifetime of 

neutrons depending on the experiment 

• No valid explanation supported by experimental 
data is available 

• Not just the explanation, but the value itself is 
important, we must get to the bottom of this 
problem!



Thanks for your 
attention!


