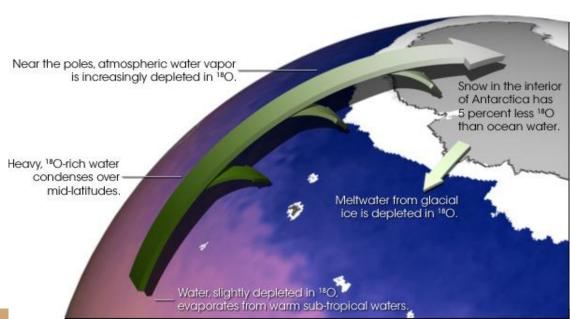

Isotope ratio in ice core

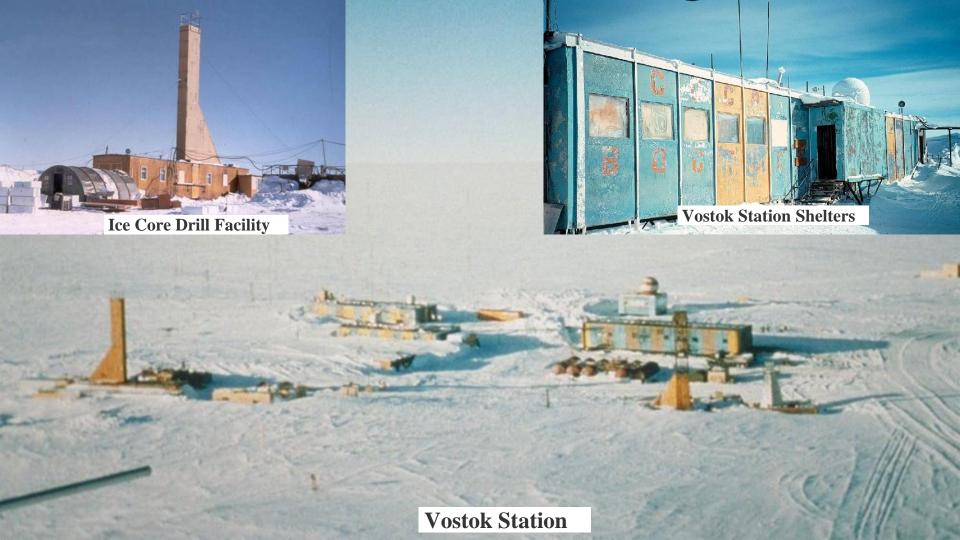
Gergácz Mira Anna


Oxygen isotopes in the water cycle

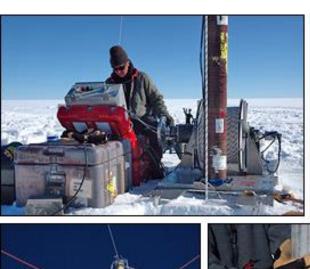
- ❖ the most common isotopes are ¹⁶O and ¹⁸O
 - ➤ ¹⁶O is a product of stellar evolution, created during the triple-alpha process
 - ➤ ¹⁸O is a heavier and much rarer isotope, has a natural abundance of only 0.2%
- the ratio of these two isotopes in the water changes with the climate
 - this ratio is influenced mainly by the water vapor is increasingly depleted in 18O.
 - water containing ¹⁶O evaporates more quickly, than water containing ¹⁸O
 - ➤ however water vapour containing ¹⁸O will Heavy, ¹⁸O-rich water condenses over condenses over mid-letitudes
 - the snow falls to the ground, creating a new layer on the surface, preserving the isotope ratio

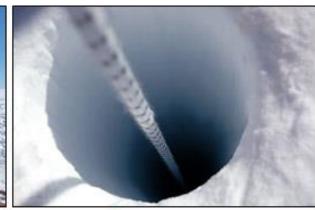
Isotope ratio

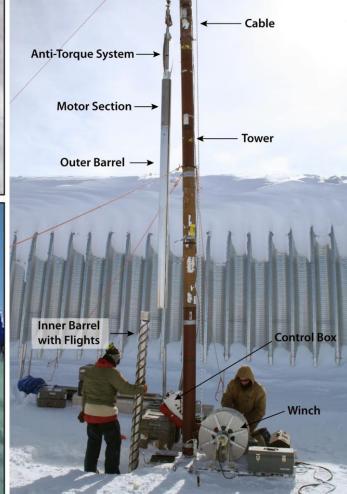
- differences in the amount of these isotopes are measured by comparing the ratio of ¹⁸O/¹⁶O to the average ocean water
 - \triangleright this comparison is called δ^{18} O
 - ightharpoonup average ocean water has a value of 0% $\delta^{18}{
 m O}$
 - the water vapour is a few permil negative (around -3%), since it has less ¹⁸O than average ocean water
 - on the way to the polar regions, ^{18}O will form rain in a greater extent than light isotopes due to its mass, making the rain have a more positive $\delta^{18}O$, than the clouds heavy, ^{18}O -rich water condenses over it fell from


Ice core measurements

- glaciers form as layers of snow accumulate on top of eachother
 - > each layer is different in chemistry and texture
 - > as more and more layer falls to the ground, the snow compresses, forming ice
 - particles and air bubbles become a part of it. storing information about the climate conditions at the time of formation
 - for example: snow accumulation, local temperature, green gas concentration of the atmosphere, volcanic activity
- ice cores are extracted by drilling
 - ➤ most ice cores come from Antarctica or Greenland, where the longest ice cores extend to 3 kilometers
 - > the oldest continuous ice core records extend to 130 thousand years in Greenland and 800 thousand years in Antarctica


Ice core measurements


- types of drills
 - > mechanical: used where the ice is well below freezing
 - ➤ thermal: used where ice is above -10°C
- ice core sections are typically 1 meter to 6 meters long with a 50-132 millimeter in diameter
 - many repeated drill runs are required to collect a longer ice core
- ♦ hand augers: used when only the top 20-30 meters are targeted



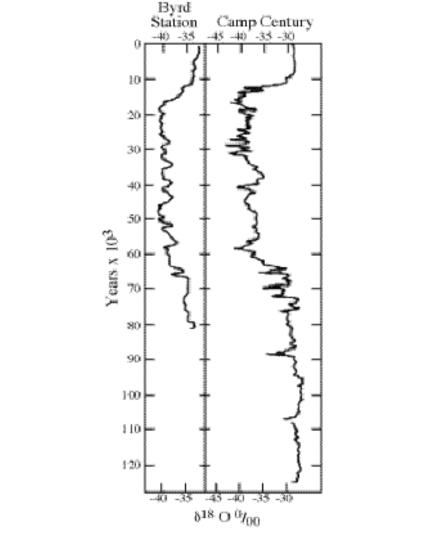


Fig. 5: Oxygen isotope ratio (temperature proxy) from the NorthGRIP (Greenland) ice core showing a sequence of rapid temperature jumps⁽⁸⁾

Sources

- https://icecores.org/about-ice-cores
- http://www.ces.fau.edu/nasa/module-3/how-is-temperature-measured/isotopes.php
- http://adamrozanski.com/vostok-station
- https://globalchange.umich.edu/globalchange1/current/labs/Lab10_Vostok/Vostok.htm
- https://earthobservatory.nasa.gov/features/Paleoclimatology_OxygenBalance
- https://www.bas.ac.uk/data/our-data/publication/ice-cores-and-climate-change/