

Blowin' in the wind - Tropical cyclones

Szende Sándor

Agenda

Basic concepts

- hurricane, typhoone, cyclone
- depending on location
- "Hurricane Season" : June 1 November 30
- giving women's names before
- the end of the 19th century

Meaning: evil spirit of the wind

Hurricane Florence, seen from the International Space Station, in the Atlantic in September 2018

- hurricane, typhoone, cyclone
- depending on location
- "Hurricane Season" : June 1 November 30
- giving women's names before the end of the 19th century
- Meaning: evil spirit of the wind

Hurricane formation

Several factors are required:

- High sea surface temperature
- Low vertical wind shear
- Atmospheric instability
- High humidity
- Coriolis force

Diagram of a tropical cyclone in the Northern hemisphere

Hurricane formation

Several factors are required:

- High sea surface temperature
- Low vertical wind shear
- Atmospheric instability
- High humidity
- Coriolis force

Hurricane Irma eyewall formation [source: https://gifer.com/en/g29r]

Build your own hurricane

Top 5 deadliest hurricanes

5. Katrina (2005)

- Rapidly strengthening to Category 5 levels over warm water in the Gulf of Mexico
- At one point 80 percent of New Orleans was underwater
- Damage: \$161 billion is considered the costliest hurricane in U.S. history

This dog rode out Hurricane Katrina on a piece of wood

5. Katrina (2005)

- Rapidly strengthening to
 Category 5 levels over warm
 water in the Gulf of Mexico
- At one point 80 percent of New Orleans was underwater
- Damage: \$161 billion is considered the costliest hurricane in U.S. history

New Orleans under water

5. Katrina (2005)

4. Maria (2017)

- Coming just two weeks after a brutal Irma particulary on the same area
- At one point 90 percent of Puerto Rico was without electricity
- Thousands of reasidents have moved to the U.S.

People wait in line for gas as they deal with the aftermath of Hurricane Maria

- 5. Katrina (2005)
- 4. Maria (2017)

3. Galveston Hurricane (1900)

- Killed an estimated 6,000 to 12,000 people, mostly in Texas
- After the hurricane Galveston
 5 kilometer seawall and raised the level of the entire city

- 5. Katrina (2005)
- 4. Maria (2017)
- 3. Galveston Hurricane (1900)

2. Mitch (1998)

- Killing 11 000 people, mainly in Honduras and Nicaragua
- Total damage amounting to over \$5 billion

- 5. Katrina (2005)
- 4. Maria (2017)
- 3. Galveston Hurricane (1900)

2. Mitch (1998)

- Killing 11 000 people, mainly in Honduras and Nicaragua
- Total damage amounting to over \$5 billion

The residents of Tegucigalpa, Honduras clean the streets of the capital after Hurricane Mitch unleashed deadly mudslides

- 5. Katrina (2005)
- 4. Maria (2017)
- 3. Galveston Hurricane (1900)
- 2. Mitch (1998)
- 1. Great Hurricane (1780)
- Killing appoximatly 22 000 people
- Destroys warhips in Revolutionary War.
- The deadliest Atlantic hurricane on record

Categorization of the storms

Category 1	Category 2	Category 3	Category 4	Category 5
 119–153 km/h no significant structural damage 	- 154–177 km/h	- 178–208 km/h	- 209–251 km/h	- ≥ 252 km/h

Category 1	Category 2	Category 3	Category 4	Category 5
 119–153 km/h no significant structural damage 	 154–177 km/h often damage roofing material 	- 178–208 km/h	- 209–251 km/h	- ≥252 km/h

Category 1	Category 2	Category 3	Category 4	Category 5
 119–153 km/h no significant structural damage 	 154–177 km/h often damage roofing material 	 178–208 km/h Stuctural damage to small residences 	- 209–251 km/h	- ≥252 km/h

Classifies into five categories distinguished by the intensities of their sustained winds.

Category 1	Category 2	Category 3	Category 4	Category 5
 119–153 km/h no significant structural damage 	 154–177 km/h often damage roofing material 	 178–208 km/h stuctural damage to small residences 	 209–251 km/h complete structural failure on small residences 	- ≥252 km/h

Source:https://en.wikipedia.org/wiki/Saffir-Simpson_scale

Category 1	Category 2	Category 3	Category 4	Category 5
 119–153 km/h no significant structural damage 	 154–177 km/h often damage roofing material 	 178–208 km/h stuctural damage to small residences 	 209–251 km/h complete structural failure on small residences 	 252 km/h catastrophic destruction

Storm Surge

- abnormal rise in seawater level during

a storm

- caused primarily by a storm's winds pushing water onshore
- greatest threat to life actually comes from

the storm surge

This example illustrates water level differences for storm surge, storm tide compared to sea level.

Storm Surge

- abnormal rise in seawater level during

a storm

- caused primarily by a storm's winds pushing water onshore
- greatest threat to life actually comes from

the storm surge

Storm surge of Haiyan (2013)

Storm forecast and data collection

NOAA Hurricane Hunters

- integral role in hurricane forecasting
- Slicing through the eyewall of a hurricane
- continuously transmit measurements

of pressure, humidity, temperature,

and wind direction and speed

- New experiments with drone technology (2021)

Altius-600 uncrewed aircraft (research drone)

Hurricane Hunter aircraft

NOAA Hurricane Hunters

Hurricane Hunters punched through Epsilon's eyewall in 2021 ("stadium effect")

Source: https://www.accuweather.com/en/hurricane/hurricane-hunters-captured-remarkable-imagery-of-epsilons-stadium-effect/836274

Summary

Thank you for your attention!

