3D Scientific Visualization

Olej Dóra, ELTE MSc. II., 2023.05.08.

Overwiev

• 3D technology

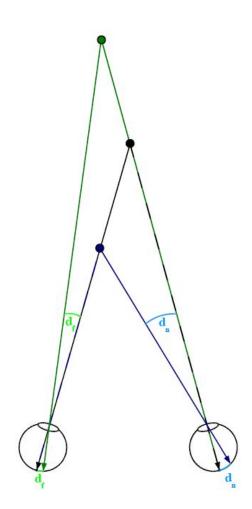
- 3D vision in humans
- passive technologies
- active technology

• Purposes

- \circ robotics
- \circ astrophysics
- Demonstration
 - 3D Sun images
 - 3D galaxy catalog

3D vision

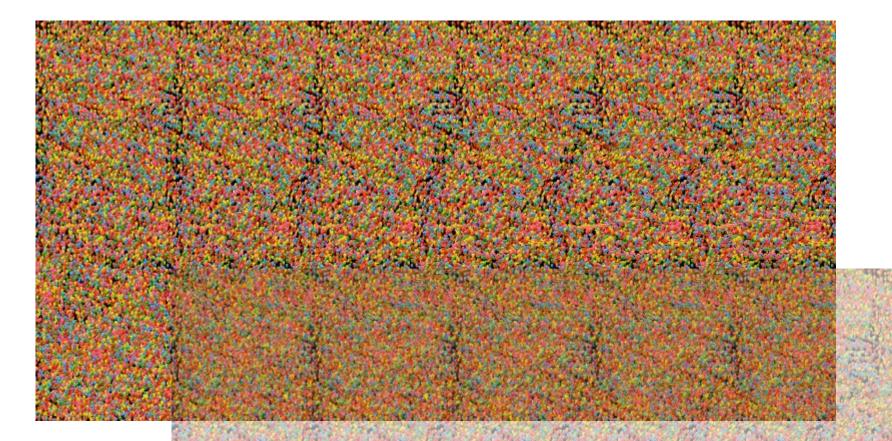
- depth perception: the major factor of perceiving the world in 3D
- ability to perceive distance to objects in the world
- possible mainly due to stereopsis and accommodation of the eye
- monocular cues:
 - motion parallax
 - kinetic depth effect
 - perspective
 - relative and absolute size of an object
 - overlaps
 - texture, lights and shades
- binocular cues:
 - stereopsis
 - \circ accomodation



https://en.wikipedia.org/wiki/Spinning_dancer

Stereopsis

- Main cue for depth perception
- First described by Charles Wheatstone in 1838
- Each eye receives the image from a slightly different perspective
- Binocular disparity: the angle between two lines of projection
- Black: fixed
- Blue: near object, bigger angle
- Green: far away object, smaller angle


Stereoscopy

- Wheatstone: stereoscope
- Two images taken from a slightly different perspective is shown to each eye separately

Stereograms - Autostereograms

3D anaglyph

- 3D effect achieved by presenting each eye a differently coloured image
- Red and cyan/green
- Needs to be viewed through coloured lens glasses
- Problem: real colour of the image is lost

Polarized 3D imaging

- Two images are projected onto a screen using circular polarizer of opposite handedness
- viewer wears eyeglasses which contain a pair of analyzing filters (circular polarizers mounted in reverse) of opposite handedness

Left-handed Circularly polarized light

Quarter-wave plate

^{Linearly} polarized Light

Linear polarizer

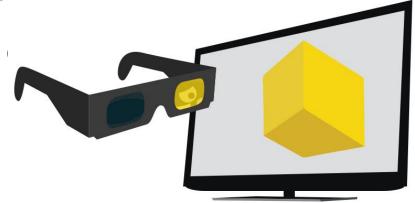
Unpolarized light

• quarter-wave plate:

birefringent material

E -> vertical and

horizontal component


 $\rightarrow \pi/2$ phase shift

Active shutter 3D system

- Alternate frame sequencing
- Only presents the image to one eye at a time, while blocking the other eye
- Alternates the two images for each eye
- Glass contains a liquid crystal which becomes opaque when voltage applied
- glasses are controlled by a timing signal

in synchronisation with the refresh state

of the screen via infrared transmitter

Computer stereo vision

Triangulation: Determining the projection of a point in 3D space onto different planes

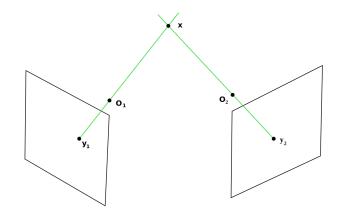
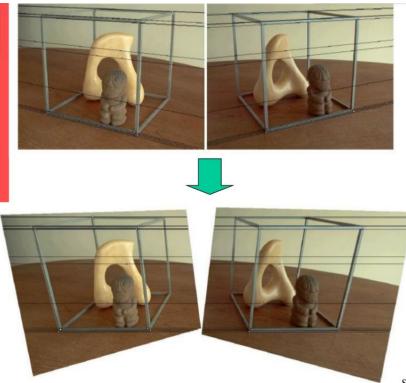
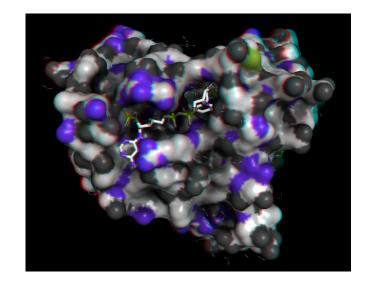




Image rectification: Transformation that projects images onto a common plane

Scientific visualization

- Medical imaging (CT and MRI scans)
 - models of organs
 - diagnosis and treatment planning
- Organic chemistry
 - study the properties of molecules
- Biology
- Geology
 - Terrain and climate/weather visualization

Robotics

- Korondi, Péter & Baranyi, Peter & Hashimoto, Hideki & Solvang, Bjørn. (2010). 3D-Based
 Internet Communication and Control. 10.1007/978-3-642-15220-7_5.
- Cooperation for R&D in robotics can be difficult due to transferring heavy equipment from one place to another
- Idea: develop a copy of the laboratory and the robots in 3D
- Then control the robot from far away
- Opportunity to test algorithms before applying in real life
- Lego Robot, industrial robot,

and the 3D simulation

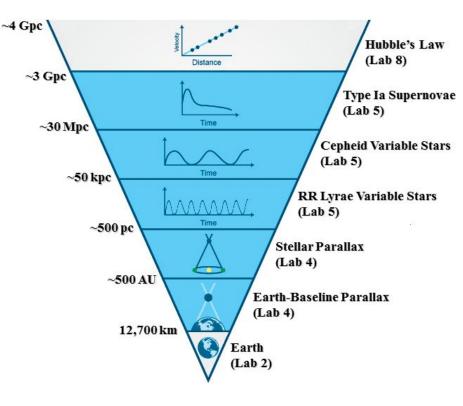
Astrophysics

- 3D imaging is an important tool
- helps visualize the structure and motion of objects in space that are otherwise hard to observe
- For example:
 - \circ structure of nebulae \rightarrow star formation
 - motion of stars in a galaxy
 - modeling the distribution of dark matter
 - large-scale structure of the universe

Sources:

- 1. previous studies (Extragalactic astrophysics, ELTE)
- 2. <u>http://atomcsill.elte.hu/letoltes/foliak/2_evf/atomcsill_2_14_Frei_Zsolt.pdf</u>
- 3. https://vc.elte.hu/
- 4. https://lweb.cfa.harvard.edu/~dfabricant/huchra/zcat/
- 5. http://www.2dfgrs.net/Public/Survey/description.html
- 6. https://skyserver.sdss.org/dr18
- 7. https://en.wikipedia.org/wiki/Stereoscopy
- 8. <u>http://www.sci.utah.edu/~gerig/CS6320-S2012/Materials/CS6320-CV-F2012-</u> <u>Rectification.pdf</u>
- 9. <u>https://www.ibm.com/products/max-storm</u>

Backup


Distance measurement in astronomy

- Parallax \rightarrow nearby stars
- Variable stars \rightarrow within our galaxy
- Ia supernovae \rightarrow nearby galaxies
- Hubble's law \rightarrow far away galaxies

Hubble's law:

 $v = H^*d$

 $\Lambda = C_{*} \Sigma$

Redshift surveys

- The Center for Astrophysics (CfA) Redshift Survey was the first attempt to map the large-scale structure of the universe
 - 1995, Smithsonian Astrophysical Observatory in Cambridge, Massachusetts
 - redshift of 18 000 bright galaxies
- 2dF Galaxy Redshift Survey
 - 2003, australian Astronomical observatory
 - ~220 000 galaxies
- 6dF Galaxy Survey
 - o **2009**
 - ~125 000 galaxies

Redshift surveys

- Sloan Digital Sky Survey (SDSS)
 - \circ ~ 1 million galaxy redshifts by 2007
 - still ongoing (SDSS V)
 - Apache Point Observatory, New Mexico, USA
- DEEP2 Survey
 - Keck Telescopes in Hawaii
 - ~ 50 000 galaxies