
MUOGRAPHY

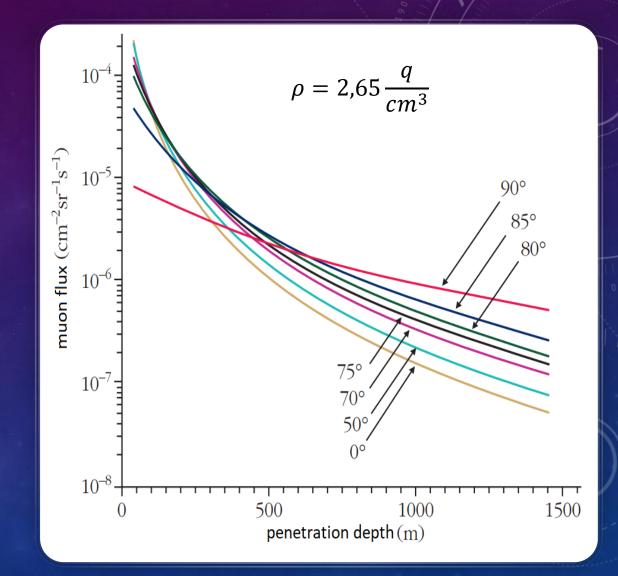
BENCE RÁBÓCZKI EÖTVÖS LORÁND UNIVERSITY

ORIGINS AND BASIC PROPERTIES OF MUONS

Muons are part of the secondary cosmic radiation

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}$

- Their flux is roughly constant (galactic and extragalactic source, not solar!)
- They have the same charge as an electron, but ~200 times times it's mass
- Their lifetime is 2.2 microseconds, allowing most of them to penetrate the surface
- Their mean energy is ~4 GeV

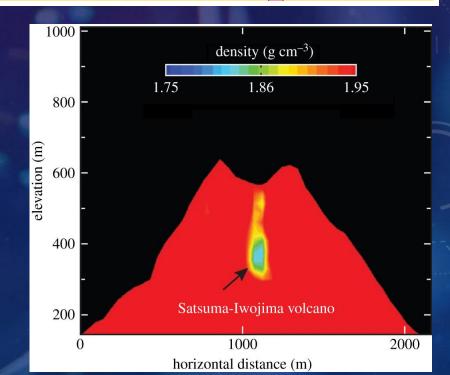

WHAT MAKES MUONS IDEAL FOR IMAGING?

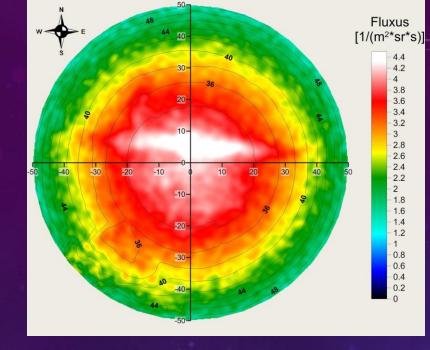
• When muons pass thorugh a medium they lose energy (Bethe-Bloch)

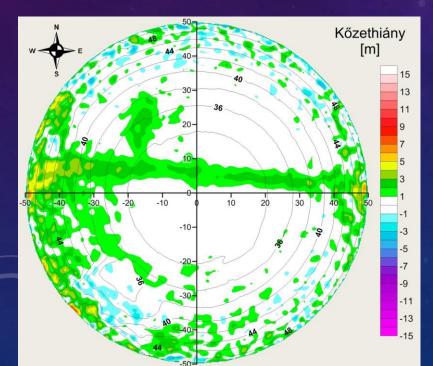
 $\left\langle -\frac{dE}{dx}\right\rangle = K\frac{Z}{A}\frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_ec^2\beta^2\gamma^2Q_{max}}{I^2} - \beta^2 - \frac{\delta}{2} + \frac{1}{8}\frac{Q_{max}^2}{\left(\gamma Mc^2\right)^2}\right] + \Delta \left|\frac{dE}{dx}\right|$

- On large scale the amount of energy lost depends on the density and the thickness of medium
- They suffer little to no scattering even on heavier elements, such as lead

→ ideal candidates for an upscaled version of Roentgen tomography




CREATING MUOGRAPHIC IMAGES


- We record the trajectory of muons that pass through the observed body in 3D
- We filter background effects from the data
- We calculate the muon flux for all angles
- Flux fluctuations inside the body indicate inhomogenities

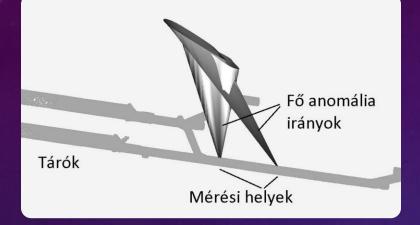
 Φ

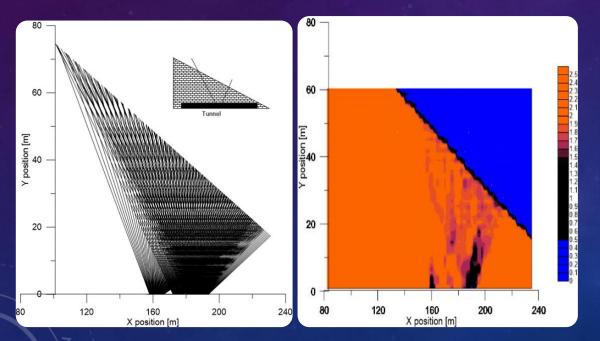
 $\overline{A \cdot \alpha \cdot \epsilon \cdot t}$

DETECTING DENSITY ANOMALIES

Digital Surface Model

Average density of the object

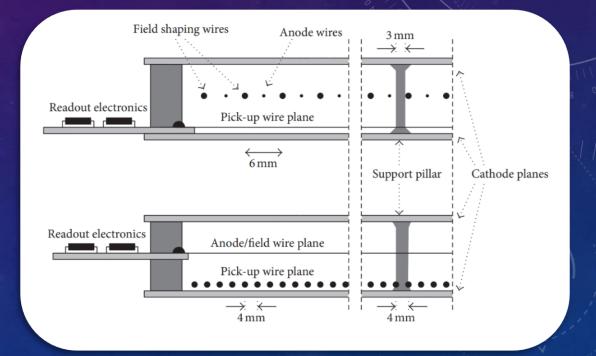

Model


Differences are density anomalies

Digital Surface Model

Measurement

Muogram



GEOPHYSICAL INVERSION

- Inversion tries to fit the measured data on a previously defined model
- We can only measure density multiplied by lenght directly
 - → we must find a density model that results in the measured flux map
- Some points in the grid have many tracks passing through, but most have few or none
 - → we solve this problem by using Bayesian inversion (heavily forces the results to be distributed around a predefinied value)

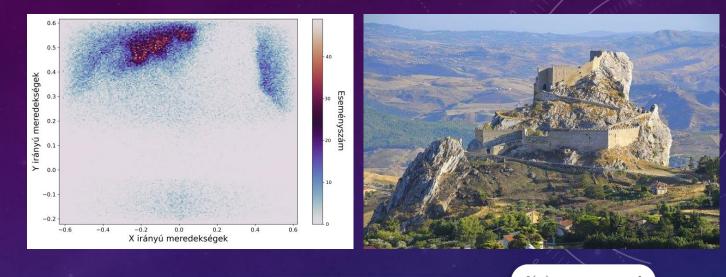
MUOGRAPHIC DETECTOR BASICS

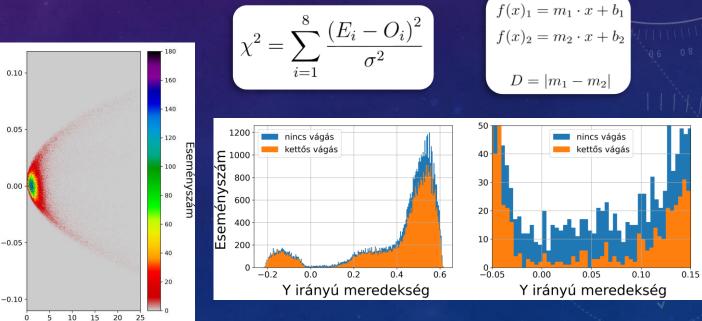
- MWPC (multi-wire proportional chamber) technology, developed by the REGARD Research Group in Wigner RCP especially for in situ muography (multiple week or month long measurements with no human supervision)
- Main features include cheapness, easy accessibility and resistance to harsh conditions (temperature and humidity)
- X and Y dimensions are recorded by electron avalanches near the high-voltage wires, caused by charged particles ionising the gas-filled inside of the detector chamber
 - Z dimension is recorded by stacking multiple chambers on top of each other

THE TWO MAIN TYPES OF DETECTORS

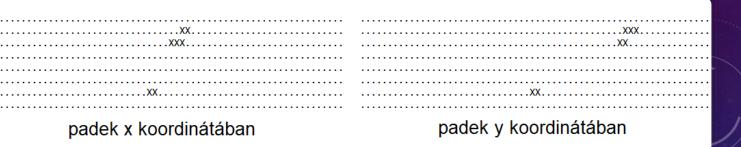
- Underground and surface muography have different focuses and require different detector designs (vertical vs horizontal muons)
- On the surface targets (volcanoes, buildings) are easily accesible \rightarrow compactness isn't an issue \rightarrow we can focus on better resolution by having more space between each chamber (the detector surface can be increased by using multiple detectors, for example: SMO in Japan)
- Underground muography is used for archeology, mining and cave exploration. Here we must be under the target \rightarrow narrow tunnels and caves \rightarrow detector must be small and easy to carry

(alternative muographic methods are also in developement \rightarrow borehole, national security, secondary particle analysis)

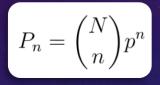

BACGROUND EFFECTS IN SURFACE MUOGRAPHY


- Main problem: low-energy and scattered particles
- Detectors contain lead plates to scatter lowenergy particles between chambers
- Two ways to filter the dataset: chi^2 test and fitting two small tracks and calculating the difference between their slopes → good correlation

Meredekség-különbségek X koordinátában


Khí^2 értékek X koordinátában

 We can cut for a maximum value in both → we still have a few completely horizontal tracks that can't be muons → we assume that there are an equal number of these fake tracks in all directions (probable cause: radioactivity)



BACKGORUND EFFECTS IN UNDERGROUND MUOGRAPHY

- High radioactivity in some mines
- Through sheer coincidence fake tracks can form → their ratio can be calculated statistically using multiple detector layers
- The more chambers we have the less probable is the forming of a fake track
- At 5-6 chambers they become negligible (we use 7-8)

Chance of a chamber triggering

 $\left[\binom{N}{n} / \binom{N}{n-1}\right] p = P_n / P_{n-1}$

The value of p can be calculated using the total number of events recorded by two neighbouring chambers

$$P_{fake} = \binom{N}{n} p^n k^{n-2} = \binom{N}{n} p^n \left(\frac{3}{m}\right)^{n-2}$$

Chance for a track to be fake (3 of the m number of pads on each wire plane must be triggered and they must form a line)

SOURCES

- https://cds.cern.ch/images/CMS-PHO-GEN-2017-008-1/file?size=large
- L. Oláh, et al.: Képalkotás kozmikus részecskékkel Fizikai Szemle 2017/3, 74-78.
- B. Rábóczki BSc Thesis, ELTE 2022
- Hiroyuki K. M. Tanaka: Japanese volcanoes visualized with muography Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377
- D. Varga, G. Nyitrai, G. Hamar, L. Oláh: High Efficiency Gaseous Tracking Detector for Cosmic Muon Radiography - Advances in High Energy Physics Volume 2016 (2016), 1962317
- G. Surányi *et al.:* Karsztfejlődés 21 (2016) pp. 205-218.
- https://media-cdn.tripadvisor.com/media/photo-s/0c/55/ae/d6/view-of-the-castle-and.jpg

Special thanks to Dr. Gergely Surányi and Dr. László Balázs for some of the figures and the REGARD group for their general support.

THANK YOU FOR YOUR ATTENTION