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How sensitive is the GammaRad? 

This is one of the most commonly asked questions.  Sensitivity is very important, arguably the most 
important performance parameter in many applications of gamma-ray spectroscopy.  However, there is a 
great deal of confusion surrounding sensitivity, for two reasons: 

(1)  When a user asks about sensitivity, he or she might mean the “intrinsic efficiency”, or the “intrinsic 
photopeak efficiency”, or the “absolute efficiency”, or the “minimum detectable activity”, and so on.  
There are many different quantities related to “sensitivity”. 

(2)  Many of these quantities depend not only on the instrument itself, but also on the measurement 
techniques, on the analysis software used, on background radiation levels, and so on.   

The various definitions of “efficiency” relate the fraction of pulses which are detected to those emitted 
or incident on the detector.  Efficiency may be defined as intrinsic vs absolute, total vs photopeak, etc.  
These quantities are used to estimate the count rate from a detector in a particular measurement.  
Efficiency depends on the scintillation material, its geometry, the distance to the source, and the energy of 

-rays. 

The “minimum detectable activity” answers the question: what is the minimum amount of radioactive 
material which can be detected with confidence?  It is related to the minimum number of counts required 
to distinguish a source from background.  It depends not only on the efficiency of the detector but also on 
the background radiation level, the signal processing algorithms, measurement time, etc.. 

This note will briefly define the various parameters used to quantify sensitivity and will show typical 
values for Amptek’s GammaRad.  The information in this note is a summary of information described in 
more detail in various references.  For a general discussion of sensitivity, we recommend the text by Knoll1 
and the on by Gilmore and Hemingway2.  Most of this discussion is not unique to the GammaRad, but 
would be applicable to any detector using a scintillator and PMT with similar properties. 

1 EFFICIENCY 

1.1 INTRINSIC TOTAL EFFICIENCY 

The intrinsic total efficiency is defined as the ratio of the total number of events which are detected to 

the total number of -ray photons incident on the detector.  It is determined by the total attenuation 
coefficient.  The plot below shows the total interaction probability, the probability of any interaction 

occuring, for -rays passing through 7.6, 10.0, and 15.2 cm of NaI(Tl).  At 662 keV, for example, about 87% 

of the incident -rays will interact when passing through 7.6 cm of NaI(Tl). 
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The values in this plot are a good estimate but there are additional effects.  First, the scintillator is 
surrounded by 1.5 mm Al, which attenuates photons below ~30 keV.  Second there are geometric effects: if 

-rays are incident along the side of the cylindrical scintillator, then the path length varies with incident 
location.  For sources at a large distance, this is a small correction: for a 7.6 cm diameter cylinder, at 662, 
the efficiency correction is ~1%.  But if the distance to the source is less than 20 times the detector 
dimension, then the correction may be quite important3. 

Third, it is possible for the signal processing electronics to fail to detect an interacting -ray.  If the 
amplitude of the pulse is very small, below the noise threshold of the electronics, it will not be detected, 
but in the GammaRad the noise threshold is very low so this is usually negligible.  Since radioactive decays 
occur at random times, the electronics may be processing one pulse when a second interaction occurs.  
These dead time losses are usually negligible at low counting rates but at sufficiently high count rates are 
important. 

1.2 PHOTOFRACTION 

The plots below show a spectrum measured from a 137Cs source and a background spectrum.  The plot 
on the left is a linear plot of the data.  Many of the counts occur in a Gaussian peak at 662 keV, which is 

energy at which the 137Cs emits -rays.  This is termed the photopeak.  But there are many counts from the 
137Cs at lower energies, arising from scattering events.  In these, the incident -ray deposits a portion of its 
energy in an interaction which produces a secondary particle, which may then exit the detector.  The plot 
on the right is a logarithmic plot of the same data.  The signal to background ratio is clearly improved if one 
uses only the photopeak or full energy counts.  Photopeak counts are produced by photoelectric 

interactions or if the incident -ray is scattered and the secondary particle is stopped in the detector. 

    

The photofraction is defined as the ratio of the number of events which deposit their full energy in the 
detector, forming the photopeak, to the total number of events which are detected.  There is no easy way 
to calculate it.  It is easy to compute the probability of photoelectric interactions: at 662 keV, about 20% of 

the incident -rays undergo a photoelectric interaction in 7.6 cm of NaI(Tl).  But in a 7.6x7.6 cm NaI(Tl) 
detector, the photopeak efficiency is closer to 50%, so most of the photopeak events are not due to 
photoelectric interactions.  The photofraction can be computed using Monte Carlo simulation methods or 
measured.  The figure below shows results which were measured for a 3”x3” cylindrical NaI(Tl) scintillator4.  
The photofraction increases for larger detectors, as more secondaries are captured.  It depends on the 
geometry of the detector and also on the distance to the source. 
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π 3.8 cm( )
2



4 π 60 cm( )
2



1.003 10
3-

=

 

1.3 INTRINSIC PHOTOPEAK EFFICIENCY 

The intrinsic photopeak efficiency is the ratio of the number of full energy events to the total number 

of -ray photons incident on the detector.  It is the product of the intrinsic total efficiency and the 
photofraction.  For 137Cs and a 7.6x7.6 cm NaI(Tl), it is (50%)(87%)=43%. 

1.4 ABSOLUTE TOTAL EFFICIENCY 

The absolute total efficiency is defined as the ratio of the total number of events which are detected to 

the total number of -ray photons emitted by the radioactive source.  It is the product of intrinsic total 

efficiency and a geometric factor GF, which yields the fraction of the emitted -rays which are incident on 
the detector.  Consider the geometry sketched below.  A source is located a distance R from a detector with 

area A facing the source.  The -rays are emitted isotoprically, i.e. with equal probabiliy in all directions, 

with solid angle 4 steradians.  Seen from the source, the detector subtends a solid angle , defined by the 
area of the detector, which determines the geometric factor.  At a large distance, the fractional solid angle 

is just the area A divided by the area of a sphere with radius R, and this is the fraction of -rays incident on 
the detector.  For a 7.6 cm dia detector at 60 cm, the geometric factor is 0.001, as calculated below. 

R



Area   A

 

The simple formulas only holds if the separation between the source and detector is large.  If we 
consider the limit of small separation, the detector subtends half the solid angle, and this does not change 
even if the source is moved slightly away from the detector.  For intermediate values, analytical 
approximations have been computed for a variety of different geometries5. 

Note that the absolute efficiency is defined in terms of the number of -rays emitted by the source, 

rather than by the number of radioactive decays.  Not every decay is accompanied by the emission of a -

ray.  For example, in 137Cs the 662 keV -ray is emitted in 85% of the decays. 

Note also that the absolute efficiency assumes there is no attenuation between the source and the 
detector and no scattering from adjacent materials.  If the source is shielded, or is embedded in a matrix 

which attenuates the -rays, this will affect the count rate.  Even more subtle is the effect of surrounding 
materials.  Consider the geometry below, where the source is located in a collimator which does not restrict 
the solid angle impinging on the detector.  Some photons from the source will be emitted away from the 
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detector, but then will backscatter from the collimator and thus add to the signal.  Computing or measuring 
absolute count rates is quite challenging. 

 

1.5 ABSOLUTE PHOTOPEAK EFFICIENCY 

The absolute photopeak efficiency is defined as the ratio of to full energy events to the total number of 

-ray photons emitted by the radioactive source.  It is the product of absolute total efficiency and 
photofraction. 

1.6 RELATIVE EFFICIENCY 

The relative efficiency is defined as the ratio of the efficiency of a detector to that of a 3”x3” NaI(Tl) 
scintillator at 1332 keV, in the same geometry and under the same conditions.  This parameter can be 
confusing, since it is expressed in the same units as the other efficiences.  The relative efficiency may 
certainly be >100%, which adds further confusion. 
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2 SAMPLE COUNT RATE CALCULATION 

The worksheet below shows an example count rate calculation for a 1 Ci 137Cs source located 60 cm 
in front of a cylindrical NaI(Tl) scintillator, 7.6 cm in diameter by 7.6 cm long.  The calculation was carried 
out in MathCad but can easily be carried out using other tools. 

 

For some applications, knowing the count rate might be sufficient.  However, in many real-world 
applications, the question is: can we distinguish these count rates from background?  In our laboratory at 
Amptek, we typically find background count rates of 300 sec-1.  The background count rate in the 662 keV 
peak is roughly 7 sec-1.  All of these counts are subject to statistical fluctuations.   

Can we confidently detect the presence of this source?  With what statistical confidence?  How long 
must we record data to obtain the necessary confidence?  The next section will address these questions. 

   The activity of the source is S.  In this example, we assume 1 μCi, or 37 kBq, which corresponds

to 3.7x104 disintegrations per second.

S 10
6-

Ci:= S 3.7 10
4

 Bq= S 3.7 10
4


1

s
=

   The fraction of disintegration which emit a γ-ray is BR, the branching ratio.  For 137Cs,

BR=85%, so there are 3.1x104 γ-rays per second emitted by the source, isotropically..

BR 0.85:= S BR 3.145 10
4


1

s
=

  The geometric factor GF is the fraction of emitted γ-rays which are incident on the detector.  Here

we assume a 7.6x7.6 cm NaI(Tl), where the source faces the circular end.  Only one out of a

thousand of the emitted γ-rays is incident on the detector.

GF
π 3.8 cm( )

2


4 π 60 cm( )
2

:= GF 1.003 10
3-

=

  The rate of γ-rays incident on the detector is Rinc.  In this example, it is 31 sec-1.

Rinc S BR GF:= Rinc 31.537
1

s
=

  The total intrinsic efficiency was shown to be 87%, and the photofraction about 50%.  From these

we can compute the total rate of interactions Rtot, and the photopeak rate, Rpeak.

ε intrinsic 0.87:=

εphotofraction 0.5:=

Rtot Rinc ε intrinsic:=

Rpeak Rtot εphotofraction:=

  For the example here we compute a total rate of 27 sec -1 and the photopeak rate of 14 sec-1.

Rtot 27.438
1

s
=

Rpeak 13.719
1

s
=
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3 DETECTION LIMITS 

The plot below shows spectra measured from an 80 Ci (2.9 MBq) 137Cs source at distances from 30 cm 
to 10 m, using a large volume scintillator (10x10x40 cm3 NaI(Tl)).  Each spectrum was measured for 60 
seconds.  Also shown is the background spectrum, measured for 10 minutes and averaged.  The dose rate 
from the background and from the source at each distance is also shown. 

 

The background radiation level was 500 nSv/hr, with total count rate of almost 2,970 sec-1.  At 10 m, 
the 137Cs source added only 20 nSv/hr and 70 sec-1.  The signal was much lower than the background.  But in 
the spectrum, one can clearly see the additional counts in the 662 keV photopeak.  Looking only at the 
photopeak, the background rate is 165 sec-1.  Even in the photopeak the signal is less than background, yet 
we can clearly distinguish the signal.  So the question is: how well can we distinguish a source from 
background and random statistical fluctuations?  How weak a source can be detected? 

 

The figure above illustrates a typical measurement.  We define a region of interest (ROI) within the 
spectrum, marked by the vertical lines, 620 to 670 keV here.  NB is the number of counts within the ROI due 
to background, the total area below the red curve.  NS is the number of counts within the ROI due to the 
signal, the total area between the red and blue curves, sometimes called net counts.  NT is the total number 
of counts within the ROI, sometimes called gross counts: 
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If there were no fluctuations in the counts or other source of uncertainty, then if NS were greater than zero, 
we would conclude that a source was present, and if NS were zero, we would conclude no source is present.  
But there will always be statistical fluctuations in the counts, due to the random nature of radioactive 
decays, and there are likely to be additional sources of uncertainty and fluctuation in a real instrument.  We 
therefore must require that NS be greater than zero by its uncertainty times factor k, which determines the 
confidence: 

 
TS NN k   

We have  

2 2 2

S T BN N N  =   

and 

2

TN T S BN N N = =   

so 

   2 2 2 2 2            
S B BN S B N S S B NN N N k N N  =        

This implies that NS must exceed a value which depends on the background rate and on the uncertainty in 
the estimate of the background rate.  There is some lower limit on the total counts, or for a fixed 
measurement time, on the count rate.  For a given absolute efficiency, this implies a minimum activity. 

The NB
2 term arises because we do not directly measure the background in the ROI, we estimate it 

from something else.  This term represents the uncertainty in the background estimate and so depends on 
the algorithm used to estimated background.  In the plot above, we used a prior measurement of the 
background to estimate NB, but this is not always possible.  A common alternative is to estimate it from the 
spectrum itself, for example using the thin gray line drawn across the ROI.  The measured counts in 
channels just outside the ROI are then used to estimate NB.  These two algorithms will yield different values 

for NB
2.   

In this example, we used the counts in an ROI around the photopeak to estimate NT and NS.  One could 
also use all the counts in the spectrum or various other algorithms.  Sometimes one knows the isotopes of 
interest before the measurement, and so has known ROIs, while in other cases one is trying to find 
unknown peaks and so must determine the ROIs from the measured spectrum.  The spectral analysis 
algorithms are critical in determining the MDA. 

3.1 CRITICAL AND DETECTION LIMITS 

One needs to compare the net counts, NS, to a threshold to determine if a source is present or not, 
typically with 95% confidence.  The critical limit LC is defined so that, if NS<LC, we may conclude that no 
source is present with a false-positive rate no larger than 5%.  The detection limit LD is defined so that, if 
NS>LD, we may conclude that a source is present with a false negative rate no larger than 5%.  It can be 
shown6 that 

2.326 

4.653 2.706

B

B

C N

D N

L

L





=

= 
 

It may seem suprising that the two limits are different, but if we had a source which gave exactly LC, 
then half the time the counts would be below LC and half the time below, so we only have 50% confidence.  
To give 95% confidence, LD must be greater than LC. 
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3.2 MINIMUM DETECTABLE ACTIVITY 

The minimum detectable activity is defined as the minimum amount of radioactive material necessary 
to yield LD.  We can rewrite this using the terms from the efficiency: SMDA is the minimum detectable 

activity, T is the measurement time, BR is the -ray yield per disintegration, GF is the geometric factor, intrinsic 

is the intrinsic efficiency, and fraction is the fraction of interactions which are summed in the algorithm (this 
may be the photopeak, all of the counts, or something else).  This gives 

  int    

D meas

MDA R F rinsic fraction

L T R

T S B G  

=

=
 

Rearranging this, and noting that (GF intrinsic fraction) is the absolute photopeak efficiency, yields 

   int int

4.653 2.706
BND

MDA

R F rinsic fraction R F rinsic fraction

L
S

B G T B G T



   


= =  

The NB is a strong function of the intensity and spectrum of the background radiation.  In many cases, 
it may be a function of the measurement time.  The absolute efficiency is a strong function of distance to 
the source and of energy.  So the MDA can only be properly defined under limited conditions.  One cannot 

state that “the MDA is 1 Ci”.  Instead, one must define the energy of the source, the distance to the 
source, and the background radiation level to properly compare the MDA of two systems. 
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4 SAMPLE MDA CALCULATION 

 

  Consider an example, using the efficiencies and counting rates computed above, if the background

count rate in the photopeak is 16 sec -1.  Further assume that we characterize the background by a

600 second measurement and then average the result.  This leads to a measurement of 9600+98

background counts in the photopeak, for a background rate of 16+0.16 sec-1.  In a 30 second

measurement, the uncertainty in the background correction will be 4.9 cts.

Rback 16
1

s
:=

Nbackgnd Tback  Rback Tback:= Nbackgnd 600 sec( ) 9.6 10
3

=

σbackgnd Tback  Nbackgnd Tback := σbackgnd 600 sec( ) 97.98=

σbackgnd 600 sec( )

600 sec
0.163

1

s
=

σback Tmeas Tback,   σbackgnd Tback 
Tmeas

Tback

:= σback 30 sec 600 sec, ( ) 4.899=

  Now assume that we measure a 1 μCi 137Cs source at a distance of 60 cm from a 3.8x3.8 cm

NaI(Tl) scintillator.  From the efficiency calculations above, this yields a photopeak rate of 13.8

sec-1.  If we integrate for 30 seconds, then we obtain 412 cts from the source, 480 background

counts, and 892 counts gross in the photopeak.

Npeak T( ) T Rpeak:= Npeak 30 sec( ) 411.563=

Nback T( ) T Rback:= Nback 30 sec( ) 480=

Ngross T( ) Nback T( ) Npeak T( ):= Ngross 30 sec( ) 891.563=

  If there were no background, then the uncertainty in the peak counts would be 20.  With the

background, and with the uncertainty in the background removal, the uncertainty in the net counts is

30.  If we use a shorter background measurement, e.g. 30 sec, this increases.

σpeak T( ) Npeak T( ):= σpeak 30 sec( ) 20.287=

σnet Tmeas Tback,   Npeak Tmeas  Nback Tmeas  σback Tmeas Tback,   
2

:=

σnet 30 sec 600 sec, ( ) 30.258= σnet 30 sec 30 sec, ( ) 37.035=

  We can compute the MDA for the geometry above, using the absolute photopeak efficiency

computed earlier.  For a 30 second measurement at 60 cm from 3.8x3.8 cm NaI(Tl), in a background

of 16 sec-1 which has been measured for 600 sec, the MDA is 62 nCi.

MDA Tmeas Tback,  
4.653 σback Tmeas Tback,   2.706

Tmeas BR GF ε intrinsic εphotofraction 
:=

MDA 30 sec 600 sec, ( ) 6.196 10
8-

 Ci=
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